
Polyspace® Code Prover™ Access™
User’s Guide

R2020a

How to Contact MathWorks

Latest news: www.mathworks.com

Sales and services: www.mathworks.com/sales_and_services

User community: www.mathworks.com/matlabcentral

Technical support: www.mathworks.com/support/contact_us

Phone: 508-647-7000

The MathWorks, Inc.
1 Apple Hill Drive
Natick, MA 01760-2098

Polyspace® Code Prover™ Access™ User's Guide
© COPYRIGHT 2019–2020 by The MathWorks, Inc.
The software described in this document is furnished under a license agreement. The software may be used or copied
only under the terms of the license agreement. No part of this manual may be photocopied or reproduced in any form
without prior written consent from The MathWorks, Inc.
FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation by, for, or through
the federal government of the United States. By accepting delivery of the Program or Documentation, the government
hereby agrees that this software or documentation qualifies as commercial computer software or commercial computer
software documentation as such terms are used or defined in FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014.
Accordingly, the terms and conditions of this Agreement and only those rights specified in this Agreement, shall pertain
to and govern the use, modification, reproduction, release, performance, display, and disclosure of the Program and
Documentation by the federal government (or other entity acquiring for or through the federal government) and shall
supersede any conflicting contractual terms or conditions. If this License fails to meet the government's needs or is
inconsistent in any respect with federal procurement law, the government agrees to return the Program and
Documentation, unused, to The MathWorks, Inc.

Trademarks
MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See
www.mathworks.com/trademarks for a list of additional trademarks. Other product or brand names may be
trademarks or registered trademarks of their respective holders.
Patents
MathWorks products are protected by one or more U.S. patents. Please see www.mathworks.com/patents for
more information.
Revision History
March 2019 Online only New for Version 2.0 (R2019a)
September 2019 Online Only Revised for Version 2.1 (Release 2019b)
March 2020 Online Only Revised for Version 2.2 (Release 2020a)

https://www.mathworks.com
https://www.mathworks.com/sales_and_services
https://www.mathworks.com/matlabcentral
https://www.mathworks.com/support/contact_us
https://www.mathworks.com/trademarks
https://www.mathworks.com/patents

Interpret Polyspace Code Prover Access Results
1

Interpret Polyspace Code Prover Access Results . 1-2
Interpret Result . 1-3
Find Root Cause of Result . 1-4

Code Prover Result and Source Code Colors . 1-8
Result Colors . 1-8
Source Code Colors . 1-10
Global Variable Colors . 1-11

Code Prover Run-Time Checks . 1-13
Data Flow Checks . 1-13
Numerical Checks . 1-13
Static Memory Checks . 1-14
Control Flow Checks . 1-14
C++ Checks . 1-14
Other Checks . 1-15

Dashboard . 1-16

Code Metrics Dashboard . 1-18

Quality Objectives Dashboard . 1-21
Customize Software Quality Objectives . 1-22

Call Hierarchy . 1-25

Configuration Settings . 1-27

Global Variables . 1-30

Result Details . 1-35

Results List . 1-37

Review History . 1-39

Source Code . 1-41
Tooltips . 1-41
Examine Source Code . 1-42
Expand Macros . 1-42
View Code Block . 1-43
Navigate from Code to Model . 1-44

iii

Contents

Track Issue in Bug Tracking Tool . 1-46
Create a Ticket . 1-46
Manage Existing Tickets . 1-46

Code Prover Analysis Following Red and Orange Checks 1-48
Code Following Red Check . 1-48
Green Check Following Orange Check . 1-49
Gray Check Following Orange Check . 1-49
Red Check Following Orange Check . 1-50
Red Checks in Unreachable Code . 1-51

Order of Code Prover Run-Time Checks . 1-52

Orange Checks in Code Prover . 1-54
When Orange Checks Occur . 1-54
Why Review Orange Checks . 1-55
How to Review Orange Checks . 1-55
How to Reduce Orange Checks . 1-55

Managing Orange Checks . 1-57
Software Development Stage . 1-58
Quality Goals . 1-59

Critical Orange Checks . 1-61
Path . 1-61
Bounded Input Values . 1-62
Unbounded Input Values . 1-62

Software Quality Objectives . 1-63
Comparing Verification Results Against Software Quality Objectives 1-68

Software Quality Objective Subsets (C:2004) . 1-70
Rules in SQO-Subset1 . 1-70
Rules in SQO-Subset2 . 1-71

Software Quality Objective Subsets (AC AGC) . 1-74
Rules in SQO-Subset1 . 1-74
Rules in SQO-Subset2 . 1-74

Software Quality Objective Subsets (C:2012) . 1-77
Guidelines in SQO-Subset1 . 1-77
Guidelines in SQO-Subset2 . 1-78

Avoid Violations of MISRA C 2012 Rules 8.x . 1-80

Software Quality Objective Subsets (C++) . 1-83
SQO Subset 1 – Direct Impact on Selectivity . 1-83
SQO Subset 2 – Indirect Impact on Selectivity . 1-84

Coding Rule Subsets Checked Early in Analysis . 1-89
MISRA C: 2004 and MISRA AC AGC Rules . 1-89
MISRA C: 2012 Rules . 1-96

HIS Code Complexity Metrics . 1-104
Project . 1-104

iv Contents

File . 1-104
Function . 1-104

Fix or Comment Polyspace Results
2

Address Polyspace Results Through Bug Fixes or Justifications 2-2
Add Review Information in Result Details pane . 2-2
Comment or Annotate in Code . 2-3

Annotate Code and Hide Known or Acceptable Results 2-4
Code Annotation Syntax . 2-4
Syntax Examples . 2-7

Short Names of Code Prover Run-Time Checks . 2-9

Short Names of Code Complexity Metrics . 2-11
Project Metrics . 2-11
File Metrics . 2-11
Function Metrics . 2-11

Define Custom Annotation Format . 2-13
Define Annotation Syntax Format . 2-15
Map Your Annotation to the Polyspace Annotation Syntax 2-18

Annotation Description Full XML Template . 2-20
Example . 2-23

Justify Coding Rule Violations Using Code Prover Checks 2-26
Rules About Data Type Conversions . 2-26
Rules About Pointer Arithmetic . 2-27

Manage Results
3

Filter and Sort Results . 3-2
Filter Results . 3-4

Prioritize Check Review . 3-7

Reviewing Checks
4

Review and Fix Absolute Address Usage Checks . 4-2

v

Review and Fix Correctness Condition Checks . 4-3
Step 1: Interpret Check Information . 4-3
Step 2: Determine Root Cause of Check . 4-5
Step 3: Trace Check to Polyspace Assumption . 4-6

Review and Fix Division by Zero Checks . 4-7
Step 1: Interpret Check Information . 4-7
Step 2: Determine Root Cause of Check . 4-8
Step 3: Look for Common Causes of Check . 4-9
Step 4: Trace Check to Polyspace Assumption . 4-10

Review and Fix Function Not Called Checks . 4-11
Step 1: Interpret Check Information . 4-11
Step 2: Determine Root Cause of Check . 4-11
Step 3: Look for Common Causes of Check . 4-12

Review and Fix Function Not Reachable Checks 4-13
Step 1: Interpret Check Information . 4-13
Step 2: Determine Root Cause of Check . 4-13

Review and Fix Function Not Returning Value Checks 4-15
Step 1: Interpret Check Information . 4-15
Step 2: Determine Root Cause of Check . 4-15

Review and Fix Illegally Dereferenced Pointer Checks 4-17
Step 1: Interpret Check Information . 4-17
Step 2: Determine Root Cause of Check . 4-19
Step 3: Look for Common Causes of Check . 4-21
Step 4: Trace Check to Polyspace Assumption . 4-22

Review and Fix Incorrect Object Oriented Programming Checks 4-23
Step 1: Interpret Check Information . 4-23
Step 2: Determine Root Cause of Check . 4-23

Review and Fix Invalid C++ Specific Operations Checks 4-25
Step 1: Interpret Check Information . 4-25
Step 2: Determine Root Cause of Check . 4-25
Step 3: Trace Check to Polyspace Assumption . 4-26

Review and Fix Invalid Shift Operations Checks . 4-27
Step 1: Interpret Check Information . 4-27
Step 2: Determine Root Cause of Check . 4-28
Step 3: Look for Common Causes of Check . 4-30
Step 4: Trace Check to Polyspace Assumption . 4-30

Review and Fix Invalid Use of Standard Library Routine Checks 4-31
Step 1: Interpret Check Information . 4-31
Step 2: Trace Check to Polyspace Assumption . 4-32

Invalid Use of Standard Library Floating Point Routines 4-33
What the Check Looks For . 4-33
Single-Argument Functions Checked . 4-34
Functions with Multiple Arguments . 4-34

vi Contents

Review and Fix Non-initialized Local Variable Checks 4-36
Step 1: Interpret Check Information . 4-36
Step 2: Determine Root Cause of Check . 4-36
Step 3: Look for Common Causes of Check . 4-37
Step 4: Trace Check to Polyspace Assumption . 4-38

Review and Fix Non-initialized Pointer Checks . 4-39
Step 1: Interpret Check Information . 4-39
Step 2: Determine Root Cause of Check . 4-39
Step 3: Trace Check to Polyspace Assumption . 4-40

Review and Fix Non-initialized Variable Checks . 4-41
Step 1: Interpret Check Information . 4-41
Step 2: Determine Root Cause of Check . 4-41
Step 3: Trace Check to Polyspace Assumption . 4-42

Review and Fix Non-Terminating Call Checks . 4-43
Step 1: Determine Root Cause of Check . 4-43
Step 2: Look for Common Causes of Check . 4-43

Identify Function Call with Run-Time Error . 4-45

Review and Fix Non-Terminating Loop Checks . 4-47
Step 1: Interpret Check Information . 4-47
Step 2: Determine Root Cause of Check . 4-47
Step 3: Look for Common Causes of Check . 4-48

Identify Loop Operation with Run-Time Error . 4-50

Review and Fix Null This-pointer Calling Method Checks 4-52
Step 1: Interpret Check Information . 4-52
Step 2: Determine Root Cause of Check . 4-52

Review and Fix Out of Bounds Array Index Checks 4-54
Step 1: Interpret Check Information . 4-54
Step 2: Determine Root Cause of Check . 4-54
Step 3: Look for Common Causes of Check . 4-56
Step 4: Trace Check to Polyspace Assumption . 4-56

Review and Fix Overflow Checks . 4-58
Step 1: Interpret Check Information . 4-58
Step 2: Determine Root Cause of Check . 4-58
Step 3: Look for Common Causes of Check . 4-60
Step 4: Trace Check to Polyspace Assumption . 4-61

Review and Fix Return Value Not Initialized Checks 4-62
Step 1: Interpret Check Information . 4-62
Step 2: Determine Root Cause of Check . 4-62
Step 3: Look for Common Causes of Check . 4-63
Step 4: Trace Check to Polyspace Assumption . 4-64

Review and Fix Uncaught Exception Checks . 4-65
Step 1: Interpret Check Information . 4-65
Step 2: Determine Root Cause of Check . 4-65

vii

Review and Fix Unreachable Code Checks . 4-67
Step 1: Interpret Check Information . 4-67
Step 2: Determine Root Cause of Check . 4-67
Step 3: Look for Common Causes of Check . 4-69

Review and Fix User Assertion Checks . 4-71
Step 1: Determine Root Cause of Check . 4-71
Step 2: Look for Common Causes of Check . 4-73
Step 3: Trace Check to Polyspace Assumption . 4-73

Find Relations Between Variables in Code . 4-74
Insert Pragma to Determine Variable Relation . 4-74
Further Exploration . 4-76

Review Polyspace Results on AUTOSAR Code . 4-77
See Overview of Results for all Software Components 4-77
See Runnables and Source Files in Software Component 4-78
Interpret AUTOSAR Specific Run-time Checks for Software Component

. 4-81

Coding Rule Sets and Concepts
5

Polyspace MISRA C 2004 and MISRA AC AGC Checkers 5-2

MISRA C:2004 and MISRA AC AGC Coding Rules 5-3
Supported MISRA C:2004 and MISRA AC AGC Rules 5-3
Troubleshooting . 5-3
List of Supported Coding Rules . 5-3
Unsupported MISRA C:2004 and MISRA AC AGC Rules 5-33

Polyspace MISRA C:2012 Checkers . 5-35

Essential Types in MISRA C: 2012 Rules 10.x . 5-36
Categories of Essential Types . 5-36
How MISRA C: 2012 Uses Essential Types . 5-36

Unsupported MISRA C:2012 Guidelines . 5-38

Polyspace MISRA C++ Checkers . 5-39

Unsupported MISRA C++ Coding Rules . 5-40
Language Independent Issues . 5-40
General . 5-41
Lexical Conventions . 5-41
Expressions . 5-41
Declarations . 5-42
Classes . 5-42
Templates . 5-42
Exception Handling . 5-42
Library Introduction . 5-43

viii Contents

Polyspace JSF C++ Checkers . 5-44

JSF C++ Coding Rules . 5-45
Supported JSF C++ Coding Rules . 5-45
Unsupported JSF++ Rules . 5-60

Approximations Used During Verification
6

Why Polyspace Verification Uses Approximations . 6-2

Orange Sources . 6-3
Constrain Orange Sources . 6-4

Variable Ranges . 6-6

Stubbed Functions . 6-7
Function Return Value . 6-7
Function Arguments That are Pointers . 6-9
Global Variables . 6-11

Initialization of Global Variables . 6-13
Global Variable Initialization When main Function Exists 6-13
Global Variable Initialization When main Function Does Not Exist 6-14
How Code Prover Implements Assumption About Global Variable

Initialization . 6-14
What Initialization Means for Complex Data Types 6-15

Volatile Variables . 6-17

Definitions and Declarations . 6-19
Definition . 6-19
Declaration . 6-19

Implicit Data Type Conversions . 6-20
Implicit Conversion When Operands Have Same Data Type 6-20
Implicit Conversion When Operands Have Different Data Types 6-21

Using memset and memcpy . 6-22
Polyspace Specifications for memcpy . 6-22
Polyspace Specifications for memset . 6-23

#pragma Directives . 6-26

Standard Library Float Routines . 6-28

Unions . 6-29

Variable Cast as Void Pointer . 6-30

ix

Assembly Code . 6-31
Recognized Inline Assemblers . 6-31
Single Function Containing Assembly Code . 6-33
Multiple Functions Containing Assembly Code . 6-33
Local Variables in Functions with Assembly Code 6-34

Determination of Program Stack Usage . 6-35
Investigate Possible Stack Overflow . 6-35
Stack Usage Not Computed . 6-37
Stack Usage Assumptions . 6-38

Limitations of Polyspace Verification . 6-39

Troubleshooting Polyspace Access
7

Polyspace Access ETL and Web Server services do not start 7-2
Issue . 7-2
Possible Cause: Hyper-V Network Configuration Cannot Resolve Local Host

Names . 7-2

Contact Technical Support About Polyspace Access Issues 7-5

x Contents

Interpret Polyspace Code Prover Access
Results

• “Interpret Polyspace Code Prover Access Results” on page 1-2
• “Code Prover Result and Source Code Colors” on page 1-8
• “Code Prover Run-Time Checks” on page 1-13
• “Dashboard” on page 1-16
• “Code Metrics Dashboard” on page 1-18
• “Quality Objectives Dashboard” on page 1-21
• “Call Hierarchy” on page 1-25
• “Configuration Settings” on page 1-27
• “Global Variables” on page 1-30
• “Result Details” on page 1-35
• “Results List” on page 1-37
• “Review History” on page 1-39
• “Source Code” on page 1-41
• “Track Issue in Bug Tracking Tool” on page 1-46
• “Code Prover Analysis Following Red and Orange Checks” on page 1-48
• “Order of Code Prover Run-Time Checks” on page 1-52
• “Orange Checks in Code Prover” on page 1-54
• “Managing Orange Checks” on page 1-57
• “Critical Orange Checks” on page 1-61
• “Software Quality Objectives” on page 1-63
• “Software Quality Objective Subsets (C:2004)” on page 1-70
• “Software Quality Objective Subsets (AC AGC)” on page 1-74
• “Software Quality Objective Subsets (C:2012)” on page 1-77
• “Avoid Violations of MISRA C 2012 Rules 8.x” on page 1-80
• “Software Quality Objective Subsets (C++)” on page 1-83
• “Coding Rule Subsets Checked Early in Analysis” on page 1-89
• “HIS Code Complexity Metrics” on page 1-104

1

Interpret Polyspace Code Prover Access Results
When you open the results of a Polyspace Code Prover analysis, you see a list on the Results List
pane. The list consists of run-time checks, coding rule violations, code metrics and global variable
usage.

You can first narrow down the focus of your review:

• Use filters in the toolstrip to narrow down the list. For instance, you can focus on the high-impact
defects.

• Click the a column header in the Results List to sort the list according to the content of that
column. For instance you can sort by Group or by File.

Because the results of a Code Prover run-time check are dependent on the results of previous
checks, it helps to go through run-time checks from the beginning to the end of a function.

See also “Filter and Sort Results” on page 3-2. Once you narrow down the list, you can begin
reviewing individual results. This topic describes how to review a result.

To begin your review, select a result in the list.

1 Interpret Polyspace Code Prover Access Results

1-2

Interpret Result
Interpret Message

The first step is to understand what the issue is. Read the message on the Result Details pane and
the related line of code on the Source pane.

At this point, you might be ready to decide whether to fix the issue.

The message consists of several parts:

• Check color and icon: See “Code Prover Result and Source Code Colors” on page 1-8. In case of
checks for run-time errors:

• : Red indicates a definite error.
• : Orange indicates a possible error.
• : Gray indicates unreachable code.
• : Green indicates that a specific error cannot happen.

• Description of the run-time check.

In the preceding example, the check determines if an array index goes outside the array bounds.
• Values relevant to the run-time check.

In the example, the message states the array size (127), the array bounds (0..126), and the range
of values that the array index variable can take at that point in the code (0..555).

• Relevant sources of imprecision (for orange checks).

In the example, the message states that two volatile variables might be responsible for the check.

See Variable Ranges in Source Code Tooltips

On the Source pane, variables and operations with tooltips are underlined.

 Interpret Polyspace Code Prover Access Results

1-3

In this example, tooltips appear on:

• s8_ret: You see its data type and range of values before the + operation.

If a data type conversion occurs during the + operation, you also see this conversion in the tooltip.
• +: You see the value of the left and right operand, and the result.
• =: You see any data type conversion that occurs during the assignment and the result.

Get Additional Help

Sometimes, you need additional help for certain results. To open a help page for the selected result,

click the icon. See code examples that illustrate the result.

Find Root Cause of Result
Sometimes, the root cause might be far from the actual location where the result is displayed. For
instance, a variable that you read might be non-initialized because the initialization is not reachable.
The defect is shown when you read the variable, but the root cause is possibly a previous if or
while condition that is always false.

Navigate in Source Code

Sometimes, the Result Details pane shows one sequence of events that leads to the result. However,
in most situations, you have to find your own navigation pathways through the code. Using tooltips on
variables, follow the propagation of variable ranges as you navigate through the code.

int func (int var) { /* Initial range of var */
 …
 var -= get (); /* New range of var */
 …
 set(&var); /* New range of var */
}

Use these quick navigation pathways in the user interface:

• Search for all references to a variable and browse through them.

Right-click the variable name on the Source Code pane and select Search For All References.
Alternatively, double-click the variable. These options perform more than a string match. The
options show only instances of a specific variable and not other variables with the same name in
other scopes.

• Navigate from a function call to its definition.

Right-click the function name on the Source Code pane. Select Go To Definition.
• Navigate from a function to its callers and callees.

1 Interpret Polyspace Code Prover Access Results

1-4

Click the icon on the Result Details pane. You see the function containing the result, with its
callers and callees. Click a caller or callee name to navigate to the call site. Double-click a name to
navigate to the definition.

Alternatively, click the icon to see a graphical representation of the call sequence leading to
the result. To navigate to functions in this sequence, click through nodes in the graph.

• Navigate from a function call or loop keyword to an error in the function or loop body.

If the error occurs only in a specific function call or specific loop iteration, the function call or loop
iteration is highlighted red. Right-click the red function call or loop keyword. Select Go To Cause
if the option is available.

• Navigate across all instances of a global variable.

Click the icon on the Result Details pane. See all global variables in the result and read/write
operations on them.

Before you begin navigating through pathways in your code, determine what you are looking for and
choose the appropriate navigation tool. For instance:

 Interpret Polyspace Code Prover Access Results

1-5

• To investigate a Non-initialized variable check, you might want to make sure that the variable is
not initialized at all. Look for previous instances of the variable and see if it is initialized.

• To investigate a violation of MISRA C:2012 Rule 17.7:

The value returned by a function having non-void return type shall be used.

you might want to navigate from a function call to the function definition.

For other examples of what to look for, see “Code Prover Run-Time Checks” on page 1-13. After you

navigate away from the current result, use the icon on the Result Details pane to return to that
result.

If you click a source code token containing a result, the previous result selection on the Results List
and details on the Result Details pane do not change. You can keep the result in the results list and
the result details pinned while navigating in the source code. Sometimes, you might want to see the
result associated with a token. To update the result selection and the details, Ctrl-click the token or
right-click and select Select Results At This Location.

Navigate in Separate Window

If reviewing a result requires deeper navigation in your source code, you can create a duplicate
source code window that focuses on the result while you navigate in the original source code window.

Right-click in the Source Code pane and select Create Duplicate Code Window. Right-click the
tab showing the duplicate file name (ending with -spawn 1) and select New Vertical Group.

Perform the navigation steps in the duplicate file window while the defect still appears in the original
file window. After the investigation is complete, close the duplicate window.

1 Interpret Polyspace Code Prover Access Results

1-6

See Also

More About
• “Filter and Sort Results” on page 3-2
• “Address Polyspace Results Through Bug Fixes or Justifications” on page 2-2

 Interpret Polyspace Code Prover Access Results

1-7

Code Prover Result and Source Code Colors
This topic explains the various colors used in displaying the results of a Polyspace Code Prover
analysis.

Result Colors
Polyspace displays the different verification results with specific icons and colors on the Results List
and Result Details pane.

Run-Time Checks

Polyspace Code Prover checks each operation in your code for particular run-time errors. The
software assigns a color to the operation based on whether it proved the existence or absence of a
run-time error on all or some execution paths.

Check Color Purpose Example Icon
Red Highlights operations that are proven

to cause a particular error on all
execution paths*.

Polyspace Code Prover verification
determines errors with reference to the
language standard. Though some of the
errors can be acceptable for a
particular compilation environment,
they violate the language standard. To
allow some of the environment-
dependent behavior, use appropriate
analysis options. For more on analysis
options, see the documentation for
Polyspace Code Prover or Polyspace
Code Prover Server™.

Red Overflow on:

z = x+y;

The operation + overflows for
every value of x and y that the
verification considers at that
point.

1 Interpret Polyspace Code Prover Access Results

1-8

Check Color Purpose Example Icon
Gray Highlights unreachable code. Gray Unreachable code check:

if(x>0)
{}
else
{}

The else branch is unreachable
for all values of x that the
verification considers at that
point.

Orange Highlights operations that can cause an
error on certain execution paths.

For more information, see “Orange
Checks in Code Prover” on page 1-54.

Orange Overflow on:

z = x+y;

The analysis could not prove
whether the operation +
overflows.

The most common reason is that
the operation overflows only for
some values of x and y that the
verification considers at that
point. You can use the tooltips on
the variables x and y in the
operation to see the range of
values that the verification
considers.

Green Highlights operations that are proven
to not cause a particular error on all
execution paths*.

Green Overflow on:

z = x+y;

The operation + does not overflow
for all values of x and y that the
verification considers at that
point.

* For most checks, the software terminates an execution path following the first run-time error on the
path. Therefore, if it proves a definite error (red) or absence of error (green) on an operation, the
proof is valid only for the execution paths that have not yet been terminated at that point in the code.
See “Code Prover Analysis Following Red and Orange Checks” on page 1-48.

Other Results

Besides checks for run-time errors, Polyspace Code Prover also displays other results about your
code.

Result Purpose Icon
Coding rule
violations

Indicates violation of predefined or
custom coding rules.

 for predefined rules and for custom
rules.

 Code Prover Result and Source Code Colors

1-9

Result Purpose Icon
Code
metrics

Indicates code complexity metrics. for metrics that do not exceed a limit you
specified and for metrics that exceed a
limit.

Global
variables

Indicates global variable declaration. for shared potentially unprotected
variables and for non-shared unused
variables

Source Code Colors
Polyspace uses the following color scheme for displaying code on the Source Code pane.

• Lines with checks:

For every check on the Results List pane, Polyspace assigns the check color to the corresponding
section of code.

• For lines containing macros, if the macro is collapsed, then Polyspace colors the entire line
with the color of the most severe check on the line. The severity decreases in this order: red,
gray, orange, green.

This unreachable for loop contains a macro MAX_SIZE. The entire line is colored gray.

If there is no check in a line containing a macro, Polyspace underlines the line in black when
the macro is collapsed.

• For all other lines, Polyspace colors only the keyword or identifier associated with the check.

This assignment has three checks: i and used_global are initialized but the array tab can be
accessed outside its bounds. The [operator is colored orange to indicate the issue.

• Lines with coding rule violations:

For every coding rule violation on the Results List pane, Polyspace assigns to the corresponding
keyword or identifier:

• A (inverted triangle) symbol if the coding rule is a predefined rule. The predefined rules
available are MISRA C®, MISRA® AC AGC, MISRA C++, or JSF® C++.

This if statement and || operation violates MISRA rules.

• A symbol if the coding rule is a custom rule.

This function name violates a custom naming convention.

1 Interpret Polyspace Code Prover Access Results

1-10

• Lines with tooltips:

If a tooltip is available for a keyword or identifier on the Source Code pane, Polyspace:

• Uses solid underlining for the keyword or identifier if it is associated with a check.

This line has both checks and tooltips on input, % and used_global.

• Uses dashed underlining for the keyword or identifier if it is not associated with a check.

This line has tooltips on for and <, but no checks on them.

• Uses dashed red underlining on function calls to indicate that the function body contains a
definite run-time error. The tooltip shows the line in the function body that causes the error.

This call to function_with_red leads to a run-time error.

• Function definitions:

When a function is defined, Polyspace colors the function name in blue.

• Lines deactivated due to conditional compilation:

Polyspace assigns a lighter shade of gray to code deactivated due to conditional compilation. Such
code occurs, for instance, in #ifdef statements where the macro for a branch is not defined. This
code does not affect the verification.

Global Variable Colors
The Variable Access pane shows the global variables in your code along with the read and write
operations on the variables.

For instance, used_global is a global variable that is accessed four times: once during initialization,
once in the function function_with_red, and twice in the function function_with_grey.

 Code Prover Result and Source Code Colors

1-11

The color scheme is as follows:

• Variable colors:

• Orange: Shared, unprotected global variable (only applicable to multitasking code)
• Green: Shared, protected global variable (only applicable to multitasking code)
• Black: Unshared, used global variable
• Gray: Unshared, unused global variable

See “Global Variables”.
• Operation colors: If an operation occurs in unreachable code, it is grey, otherwise black.

In the preceding example, one operation in the function function_with_grey is unreachable
but the other is reachable.

For more information, see “Global Variables” on page 1-30.

1 Interpret Polyspace Code Prover Access Results

1-12

Code Prover Run-Time Checks
Polyspace Code Prover checks each operation in your code for certain run-time errors and displays
the result as a red, green or orange check. For more information, see “Code Prover Result and Source
Code Colors” on page 1-8.

You must review a red or orange check and determine whether to fix your code. The tables below list
the checks that Polyspace Code Prover performs and how you can review them.

Data Flow Checks
Check How to Review Details
Function not
called

Investigate why a function does not
appear in the call graph starting from
the main or another entry point
function.

“Review and Fix Function Not Called
Checks” on page 4-11

Function not
reachable

Identify the call sites of a function and
investigate why they occur in
unreachable code.

“Review and Fix Function Not
Reachable Checks” on page 4-13

Non-initialized
local variable

Locate prior variable initializations if
any and see if your program can
bypass them.

“Review and Fix Non-initialized Local
Variable Checks” on page 4-36

Non-initialized
pointer

Locate prior pointer initializations if
any and see if your program can
bypass them.

“Review and Fix Non-initialized
Pointer Checks” on page 4-39

Non-initialized
variable

Locate prior initializations of the
global variable if any and see if your
program can bypass them.

“Review and Fix Non-initialized
Variable Checks” on page 4-41

Return value
not initialized

Identify paths through your function
body that do not end in
a return statement.

“Review and Fix Return Value Not
Initialized Checks” on page 4-62

Unreachable
code

Investigate why a conditional
statement in your code is redundant,
for instance, always true or always
false.

“Review and Fix Unreachable Code
Checks” on page 4-67

Numerical Checks
Check How to Review Details
Division by
zero

Review prior operations in your code
that lead to zero value of a
denominator.

“Review and Fix Division by Zero
Checks” on page 4-7

Invalid shift
operations

Review prior operations in your code
that lead to a shift amount outside
bounds or a negative value being left-
shifted.

“Review and Fix Invalid Shift
Operations Checks” on page 4-27

 Code Prover Run-Time Checks

1-13

Check How to Review Details
Overflow Review prior operations in your code

that lead to an operation overflowing.
“Review and Fix Overflow Checks” on
page 4-58

Static Memory Checks
Check How to Review Details
Absolute
address usage

Review uses of absolute address in
your code and make sure that the
addresses are valid.

“Review and Fix Absolute Address
Usage Checks” on page 4-2

Illegally
dereferenced
pointer

Review prior operations in your code
that lead to a pointer pointing outside
its allocated memory buffer.

“Review and Fix Illegally
Dereferenced Pointer Checks” on page
4-17

Out of bounds
array index

Review prior operations in your code
that lead to an array index being
greater than or equal to array size.

“Review and Fix Out of Bounds Array
Index Checks” on page 4-54

Control Flow Checks
Check How to Review Details
Non-terminating
call

Review operations in the function
body and find which run-time error
occurs because of issues specific to
the current function call.

“Review and Fix Non-Terminating Call
Checks” on page 4-43

Non-terminating
loop

Review operations in the loop and
determine why the loop does not
terminate or why a definite run-time
error occurs in one of the loop runs.

“Review and Fix Non-Terminating
Loop Checks” on page 4-47

C++ Checks
Check How to Review Details
Invalid C++
specific
operations

Determine root cause of nonpositive
array size or incorrect usage of the
typeid or the
dynamic_cast operator.

“Review and Fix Invalid C++ Specific
Operations Checks” on page 4-25

Function not
returning value

Identify paths through your function
body that do not end in
a return statement.

“Review and Fix Function Not
Returning Value Checks” on page 4-
15

Incorrect
object oriented
programming

Investigate why a
certain virtual member call
or this pointer usage represents an
incorrect pattern of object oriented
programming.

“Review and Fix Incorrect Object
Oriented Programming Checks” on
page 4-23

1 Interpret Polyspace Code Prover Access Results

1-14

Check How to Review Details
Null this-
pointer calling
method

Investigate why the pointer to the
current object can be NULL-valued.

“Review and Fix Null This-pointer
Calling Method Checks” on page 4-
52

Uncaught
exception

Investigate how an exception can
escape uncaught from the function
where it is thrown.

“Review and Fix Uncaught Exception
Checks” on page 4-65

Other Checks
Check How to Review Details
Correctness
condition

Find the root cause of a function
pointer misuse, incorrect array
conversion or variable values outside
specified constraints.

“Review and Fix Correctness
Condition Checks” on page 4-3

Invalid use of
standard
library routine

Investigate why the arguments in the
current call to the standard library
routine are invalid.

“Review and Fix Invalid Use of
Standard Library Routine Checks” on
page 4-31

User assertion Investigate why the condition in
an assert statement fails.

“Review and Fix User Assertion
Checks” on page 4-71

 Code Prover Run-Time Checks

1-15

Dashboard
The Dashboard perspective provides an overview of the analysis results in graphical format, with
clickable fields that let you drill down into your findings by project, file, or category.

When you upload an analysis run to the Polyspace Access database, the DASHBOARD updates to
display the statistics for the latest run.

1 Interpret Polyspace Code Prover Access Results

1-16

In this perspective, you can open additional dashboards to get a snapshot of the quality of your code.
You can see a project overview, or an overview for a family of findings. You can also see an aggregate
of statistics for multiple projects under the same folder.

You can also perform the following actions on this pane:

• Select elements on the graphs to filter results from the Results List pane. See “Filter and Sort
Results” on page 3-2.

• Open the current project findings in the Polyspace desktop interface.
• Manage projects and user authorizations. See “Manage Permissions and View Project Trends”.

 Dashboard

1-17

Code Metrics Dashboard
To view the code complexity metrics that Polyspace computes, use the Code Metrics dashboard. See
“Code Metrics”. Only when you use the option Calculate code metrics (-code-metrics) does
Polyspace compute the code complexity metrics during analysis. For more information on analysis
options, see the documentation for Polyspace Code Prover or Polyspace Code Prover Server .

In the PROJECT EXPLORER, select a project. Use the Code Metrics card in the Project Overview
dashboard to get a quick overview of these code metrics:

• Number of Files
• Number of Lines Without Comment
• Cyclomatic Complexity

If you select a folder in the PROJECT EXPLORER, you see the number of Sub-project(s) in that
folder and an aggregate of the metrics for all the subprojects.

To open the Code Metrics dashboard, click the Code Metrics icon in the DASHBOARD section of
the toolstrip. Or, click Code Metrics on the card in the Project Overview dashboard.

1 Interpret Polyspace Code Prover Access Results

1-18

In the Summary section, you see trend charts of the Number of lines Without Comment and
Number of Files for the project.

The other sections of the dashboard display tables with the computed value or range of the different
project, file, and function metrics. When applicable, the table shows the predefined threshold and
pass/fail status for the corresponding code metric. For a list of code complexity metrics thresholds,
see “HIS Code Complexity Metrics” on page 1-104. If you select a folder in the PROJECT
EXPLORER, the tables in the Code Metrics dashboard do not show the threshold or pass/fail status.
The value or range of the metrics are aggregate of all subprojects in the selected folder. To drill down
to a project from this aggregate view, expand a table row and click the project name.

 Code Metrics Dashboard

1-19

To improve your code quality, use the pass/fail status to identify and lower metrics values that
exceeds a threshold. For instance, if the Number of Called Functions range exceeds the predefined
threshold, click the range in the Min..Max column to open the Results List for the computed
Number of Called Functions metric. Review the results that exceed the metric threshold. If several
of those functions are always called together, you can write one function that fuses the bodies of
those functions. Call that one function instead of the group of functions that are called together.

1 Interpret Polyspace Code Prover Access Results

1-20

Quality Objectives Dashboard
To monitor the quality of your code against predefined on page 1-63 software quality thresholds or
user-defined on page 1-22 thresholds, use the Quality Objectives dashboard.

In the Project Overview dashboard, use the Quality Objectives card to get a quick overview of your
progress in achieving a quality objective threshold. From the Threshold drop-down list, select a
threshold and view the percentage of findings that you have already addressed. The card also
displays the number of findings you still need to address to reach the threshold. Click this number to
open the REVIEW perspective and see these findings in the Results List.

For a more comprehensive view, open the Quality Objectives dashboard. In the Summary section,
you can use the Threshold drop-down list to pick a threshold and see the remaining open issues,
including a breakdown for each category, such as code metrics or coding rules.

In this Quality Objectives dashboard, 96% of the findings required to achieve threshold SQO2 have
been addressed. There are 17 open issues, including 12 Code Metrics, and 5 Systematic issues.
Open issues are issues with a review status of Unreviewed, To fix, To investigate, or Other.

 Quality Objectives Dashboard

1-21

The table shows the current progress of code quality for all quality objective thresholds. To view the
Results List for a set of open issues, click the corresponding value in the table.

Customize Software Quality Objectives
Depending on the requirements of your team or project, you can customize the thresholds that you
use as pass/fail criteria to track the quality of your code. For instance, you might want your team to
address all MISRA C:2012 directives to achieve SQO level 2. To set custom thresholds for the quality
objectives, click Quality Objectives Settings on the Quality Objectives dashboard. You must have
the role of Administrator to customize the quality objective settings. Users that have the roles
Owner or Contributor have a read-only view of the quality objective settings.

1 Interpret Polyspace Code Prover Access Results

1-22

To make changes to the existing thresholds selection, click a findings family, for instance MISRA
C:2004, then select a node or expand the node to select individual results. For each family of results,
you can view the nodes by group or by category when available.

When you select nodes in the leftmost part of the table:

• indicates that all entries under the node are enabled.
• indicates that some entries under the node are not enabled.

For the quality objective thresholds under the SQO columns:

• indicates that all the entries that are enabled under the node on that row apply to this
threshold.

• indicates that some of the entries that are enabled under the node on that row do not apply to
this threshold.

 Quality Objectives Dashboard

1-23

For example, in the previous figure, the Language extensions node is expanded. The check box next
to the node is partially filled since rule 2.1 is not enabled. For the thresholds, all the rules that are
enabled under the node apply to thresholds SQO5 and SQO6. Rule 2.2 does not apply to SQO4, which
is why the check box for SQO4 is partially filled.

For Run-time Checks, you can customize the percentage of findings that you must address or justify
for each threshold.

For Code Metrics, you can customize the value of the different metrics for each threshold.

When you make a selection for a threshold, all higher thresholds inherit that selection. For instance,
if you select a coding rule for SQO3, the rule is also selected for SQO4, SQO5, and SQO6. By default,
when you first enable a node or result, it applies only to SQO6.

The changes that you make to the quality objectives thresholds apply to all the projects in Polyspace
Access. Before making changes to the settings, make sure that you inform all Polyspace Access users.

To save your changes, click Save. You cannot recover previous custom settings. To reload the
predefined on page 1-63 thresholds, click Back to default.

The quality objectives statistics for a project are recalculated when:

• You upload a new run for the project.
• You select a finding and make a change to any of the fields in the Result Details pane.

Note The Quality Objectives settings and the calculated statistics for a project might be out of sync
if you review the statistics after the settings were changed but before the project statistics were
recalculated.

See Also

More About
• “Software Quality Objectives” on page 1-63
• “Code Metrics”

1 Interpret Polyspace Code Prover Access Results

1-24

Call Hierarchy
The Call Hierarchy pane displays the call tree of functions in the source code.

For each function foo, the Call Hierarchy pane lists the functions and tasks that call foo (callers)

and those called by foo (callees). The callers are indicated by . The callees are indicated by .
The Call Hierarchy pane lists direct function calls and indirect calls through function pointers.

Note For Polyspace Bug Finder™ Access findings, you might not see all callers or callees of a
function, especially for calls through function pointers and dead code.

For instance, Polyspace Bug Finder Access does not display the functions registered with at_exit()
and at_quick_exit(), and called by exit() and quick_exit() respectively.

You open the Call Hierarchy pane by using the icon in your Results Details pane, or by going to
Layout > Show/Hide View.

To update the pane, click a defect on the Results List or CTRL-click a result in the Source Code
pane. You see the function containing the defect with its callers and callees.

In this example, the Call Hierarchy pane displays the function generic_validation, and with its
callers and callees.

Tip To navigate to the call location in the source code, select a caller or callee name

In the Call Hierarchy pane, you can perform these actions:

 Call Hierarchy

1-25

• Show/Hide Callers and Callees

Customize the view to display callers only or callees only. Show or hide callers and callees by
clicking this button

• Navigate Call Hierarchy

You can navigate the call hierarchy in your source code. For a function, double-click a caller or
callee name to navigate to the caller or callee definition in the source code.

• Determine If Function Is Stubbed

From the Stubbed column, you can determine if a function is stubbed. The entries in the column
show why a function was stubbed.

• Automatic: Polyspace cannot find the function definition. For instance, you did not provide the
file containing the definition.

• Std library: The function is a standard library function. You do not provide the function
definition explicitly in your Polyspace project.

• Mapped to std library: You map the function to a standard library function by using the
option -code-behavior-specifications. For more information on analysis options, see
the documentation for Polyspace Code Prover or Polyspace Code Prover Server .

1 Interpret Polyspace Code Prover Access Results

1-26

Configuration Settings
The Configuration Settings pane displays all the analysis options that were passed to the Polyspace
analysis engine to generate the currently selected findings. These options include the options that the
user specifies and the options that are enabled by default.

You open the Configuration Settings pane by going to Layout > Show/Hide View.

 Configuration Settings

1-27

1 Interpret Polyspace Code Prover Access Results

1-28

Click Checkers configuration to see which checkers are enabled for:

• “Coding Standards”, for instance MISRA C: 2012.
• “Custom Coding Rules”.

The Checkers configuration is not available for a Code Prover project if no coding standard or
custom coding rules are enabled.

 Configuration Settings

1-29

Global Variables
The Global Variables pane displays global variables (and local static variables). For each global
variable, the pane lists all functions and tasks performing read/write access on the variables, along
with their attributes, such as values, read/write accesses and shared usage.

You open the Global Variables pane by using the icon in your Results Details pane, or by going
to Layout > Show/Hide View.

For each variable and each read/write access, the Global Variables pane contains the relevant
attributes. For the variables, the various attributes are listed in this table.

Attribute Description
Variables Name of Variable
Values Value (or range of values) of variable

This column is empty for pointer variables.
Reads Number of times the variable is read
Writes Number of times the variable is written
Read by task Name of tasks reading variable
Written by task Name of tasks writing on variable

1 Interpret Polyspace Code Prover Access Results

1-30

Attribute Description
Protection Whether shared variable is protected from concurrent access

(Filled only when Usage column has entry, Shared)

The possible entries in this column are:

• Critical Section: If variable is accessed in critical section of code
• Temporal Exclusion: If variable is accessed in mutually exclusive tasks

For more details on these entries, see the documentation for Polyspace Code
Prover or Polyspace Code Prover Server.

Usage Shared, if variable is shared between tasks; otherwise, blank
File Source file containing variable declaration
Data Type Data type of variable (C/C++ data types or structures/classes)

Double-click a variable name to view read/write access operations on the variable in the Results

Details pane. The arrowhead symbols and in the Results Details pane indicate functions
performing read and write access respectively on the global variable. For further information on
tasks, see analysis option Tasks (-entry points) in the documentation for Polyspace Code
Prover or Polyspace Code Prover Server.

For access operations on the variables, the various attributes described in the Global Variables pane
are listed in this table.

Attribute Description
Values Value or range of values of variable in the function or task performing read/write

access

This column is empty for pointer variables.
Written by task Only for tasks: Name of task performing write access on variable
Read by task Only for tasks: Name of task performing read access on variable
File Source file containing access operation on variable

The Results Details pane also lists the Scope of the access operation on the variable.

For example, consider the global variable, SHR2:

 Global Variables

1-31

The function, Tserver, in the file, tasks1.c, performs two write operations on SHR2. This is
indicated in the Results Details pane by the two instances of Tserver() in the table, marked by

. Likewise, the read access by task initregulate is also listed in the table and marked by .

The color scheme for variables in the Global Variables pane is:

• Black: global variable.
• Orange: global variable, shared between tasks with no protection against concurrent access.
• Green: global variable, shared between tasks and protected against concurrent access.
• Gray: global variable, declared but not used in reachable code.

If a task performs certain operations on a global variable, but the operations are in unreachable code,
the tasks are colored gray.

The information about global variables and read/write access operations obtained from the Global
Variables pane is called the data dictionary.

You can also perform the following actions from the Global Variables pane.

1 Interpret Polyspace Code Prover Access Results

1-32

• View Structured Variables

For structured variables, double click the variable in the Global Variables pane to view the
individual fields. For example, for the structure, SHR4, the pane displays the fields, SHR4.A and
SHR4.B, and the functions performing read/write access on them.

• Show/Hide Callers and Callees

Customize the Global Variables pane to show only the shared variables. On the Global
Variables pane toolbar, click the Non-Shared Variables button to show or hide non-shared
variables.

• Hide Access in Unreachable Code

Hide read/write access occurring in unreachable code by clicking the filter button .
• Limitations

You cannot see an addressing operation on a global variable or object (in C++) as a read/write
operation in the Global Variables pane. For example, consider the following C++ code:
class C0
{
public:
 C0() {}
 int get_flag()
 {
 volatile int rd;
 return rd;
 }
 ~C0() {}
private:
 int a; /* Never read/written */
};

C0 c0; /* c0 is unreachable */

int main()
{
 if (c0.get_flag()) /* Uses address of the method */
 {
 int *ptr = take_addr_of_x();

 Global Variables

1-33

 return 1;
 }
 else
 return 0;
}

You do not see the method call c0.get_flag() in the Global Variables pane because the call is
an addressing operation on the method belonging to the object c0.

1 Interpret Polyspace Code Prover Access Results

1-34

Result Details
The Result Details pane contains comprehensive information about a specific defect. To see this
information, on the Results List pane, select the defect.

• The top right corner shows the file and function containing the defect, in the format file_name/
function_name.

• The yellow box contains the name of the defect with an explanation of why the defect occurs.

The button allows you to access documentation for the defect. When available, click the
icon to see fix suggestions for the defect.

On this pane, you can also:

• Assign a Severity and Status to each check, and enter comments to describe the results of your
review.

• Assign a reviewer to the result. A reviewer can filter the Results List to only show results that are
assigned to him or her.

• Create a ticket in a bug tracking tool such as JIRA. Once you create the ticket the Results Details
for this defect shows a clickable link to the ticket you created.

• View the event traceback.

The Event column lists the sequence of code instructions causing the defect. The Scope column
lists the function containing the instructions. If the instructions are not in a function, the column
lists the file containing the instructions.

 Result Details

1-35

The Variable trace check box allows you to see an additional set of instructions that are related
to the defect.

• Click the icon to open the “Call Hierarchy” on page 1-25.
•

Click the icon to open the:

• Error Call Graph if the selected finding is a Run-time Check.

The pane displays the call sequence that leads to the detected finding. Click a node on the
graph to navigate back to the source code.

• Variable Access Graph if the selected finding is a Global variable.

The pane displays a graphical representation of the access operations on global variables.
Click a node on the graph to navigate back to the source code at the location of calling and
called functions.

See Also

More About
• “Address Polyspace Results Through Bug Fixes or Justifications” on page 2-2
• “Review History” on page 1-39

1 Interpret Polyspace Code Prover Access Results

1-36

Results List
The Results List pane lists all results along with their attributes.

For each result, the Results List pane contains the result attributes, listed in columns:

Attribute Description
Family Group to which the result belongs.
ID Unique identification number of the result.
Type Defect or coding rule violation.
Group Category of the result, for instance:

• For defects: Groups such as static memory, numerical, control flow,
concurrency, etc.

• For coding rule violations: Groups defined by the coding rule standard.

For instance, MISRA C: 2012 defines groups related to code constructs
such as functions, pointers and arrays, etc.

Check Result name, for instance:

• For defects: Defect name
• For coding rule violations: Coding rule number

Information Result sub-type when available.

• For defects: Impact classification.

For coding standards: required or mandatory, rule or recommendation.
Detail Additional information about a result. The column shows the first line of

the Result Details pane.

For an example of how to use this column, see the result MISRA C:2012
Dir 1.1.

File File containing the instruction where the result occurs
Function Function containing the instruction where the result occurs. If the

function is a method of a class, it appears in the format
class_name::function_name.

Status Review status you have assigned to the result. The possible statuses are:

• Unreviewed (default status)
• To investigate
• To fix
• Justified
• No action planned
• Not a defect
• Other

 Results List

1-37

Attribute Description
Severity Level of severity you have assigned to the result. The possible levels are:

• Unset
• High
• Medium
• Low

Assigned to User name of reviewer assigned to this result.
Ticket Key When you create a bug tracking tool (BTT) ticket for a result, this field

contains the ticket ID. Click the ticket ID in the Results Details to open
the ticket in the BTT interface.

Comments Comments you have entered about the result
Folder Path to the folder that contains the source file with the result

To show or hide any of the columns, click the icon in the upper-right of the Results List pane,
then select or clear the title of the column that you want to show or hide.

Using this pane, you can:

• Navigate through the results.
• Organize your result review using filters in the toolstrip or in the context menu. For more

information, see “Filter and Sort Results” on page 3-2.
• Right-click a result to get the URL of the result. When you open this URL in a web browser you get

see the Results List pane filtered to that one result.

If the Results List exceeds 10000 findings, Polyspace Access truncates the list and displays this icon
 in the filters bar. To show all findings, see the contextual help of the icon.

The 10000 findings limit is preset and cannot be changed.

1 Interpret Polyspace Code Prover Access Results

1-38

Review History
The Review History pane displays changes to the Status, Severity, or Comment for a finding. For
each change to these review fields, you see a separate row with:

• The date and time of the change.
• The user name of the user who made the change.
• The review field that changed, for instance Severity.
• The original value of the review field.
• The new value of the review field.

All the changes that you make to the review fields of findings in the Polyspace desktop interface are
shown in a single row after you upload these findings to Polyspace Access. The Review History pane
does not display the user name of the user who made these changes.

You open the Review History pane by going to Layout > Show/Hide View.

You can display changes for all the review fields, or you can filter for changes by Status, Severity,
and Comment.

 Review History

1-39

See Also

More About
• “Address Polyspace Results Through Bug Fixes or Justifications” on page 2-2
• “Result Details” on page 1-35

1 Interpret Polyspace Code Prover Access Results

1-40

Source Code
The Source Code pane shows the source code with the defects colored in red.

Tooltips
Placing your cursor over a result displays a tooltip that provides range information for variables,
operands, function parameters, and return values.

 Source Code

1-41

Examine Source Code
On the Source Code pane, if you right-click a text string, the context menu provides options to
examine your code:

For example, if you right-click the variable, you can use the following options to examine and navigate
through your code:

• Search For All References — List all references in the Code Search pane. The software
supports this feature for global and local variables, functions, types, and classes.

• Go To Definition — Go to the line of code that contains the definition of i. The software supports
this feature for global and local variables, functions, types, and classes. If a definition is not
available to Polyspace, selecting the option takes you to the declaration.

• Select Results –– Show more information about the selected result in the Results Details pane
and pin the result in the Source Code pane.

After you navigate away from the current result, use the icon on the Result Details pane to
come back.

• Go To Line — Open the Go to line dialog box. If you specify a line number and click Enter, the
software displays the specified line of code.

To search for instances of your selection in the Current Source File or in All Source Files, double-
click your selection before you right-click.

Expand Macros
You can view the contents of source code macros in the source code view. A code information bar
displays icons that identify source code lines with macros.

1 Interpret Polyspace Code Prover Access Results

1-42

When you click this icon, the software displays the contents of macros on the next line.

To display the normal source code again, click the icon again.

Note

1 The Result Details pane also allows you to view the contents of a macro if the check you select
lies within a macro.

2 You cannot expand OSEK API macros in the Source Code pane.

View Code Block
On the Source Code pane, to highlight a block of code, click either its opening or closing brace. If
the brace itself is highlighted, click the brace twice.

 Source Code

1-43

Navigate from Code to Model
If you run Polyspace on generated code in Simulink® and upload the results to Polyspace Access, you
can navigate from the source code in Polyspace Access to blocks in the model.

On the Source Code pane in the Polyspace Access web interface, links in code comments show
blocks that generate the subsequent lines of code. To see the block in the model:

• Right-click a link and select Copy MATLAB Command to Highlight Block.

1 Interpret Polyspace Code Prover Access Results

1-44

This action copies the MATLAB® command required to highlight the block. The command uses the
Simulink.ID.hilite function.

• In MATLAB editor, paste and run the copied command with the model open.

 Source Code

1-45

Track Issue in Bug Tracking Tool
If you use a bug tracking tool (BTT) such as Jira Software or Redmine as part of your software
development process, you can configure Polyspace Access to create BTT tickets for Polyspace
findings and add those tickets to the relevant project in your BTT software. See “Configure the User
Manager and Issue Tracker”.

Create a Ticket
To create a BTT ticket, select one or more findings in the Results list and, from the Results Details
pane, click Create in Polyspace Access or Create ticket in the Polyspace desktop interface. To select
multiple findings, press CTRL and click the findings.

Note In the desktop interface, you can create a BTT ticket only for results that you open from
Polyspace Access.

If you use Jira, you may be prompted to enter your credentials. These credentials might be different
from your Polyspace Access credentials.

After you create a BTT ticket, click the link in the Results Details pane to open the ticket in the BTT
interface and track the progress in resolving the issue. For each finding that you selected when you
created the ticket, the Description field of the ticket includes a URL to the Polyspace Access Results
List filtered down to that finding.

Manage Existing Tickets
Once you create a BTT ticket, you can attach the ticket to additional findings or detach the ticket
from findings associated with the ticket. To attach a ticket to additional findings:

1 Interpret Polyspace Code Prover Access Results

1-46

1 Select findings in the Results List.
2 When prompted, enter the ticket ID in the dialogue window.

Click the copy icon in the Result Details pane of a finding already associated with the ticket to
copy the ticket ID. The copy icon is not available when you select multiple findings with
different ticket IDs. The ticket ID is also available in the Ticket Key column of the Results List.

3 Click the copy icon in the dialogue window to copy the findings URL, then click Save.
4 Click the ticket URL in the Result Details to open the ticket in the BTT interface and paste the

findings URL you copied into the ticket description field.

You cannot attach more than one ticket to a finding. If a finding is already associated with a ticket,
attaching a new ticket overwrites the existing ticket ID. This operation does not overwrite the ticket
in your BTT. You can see all findings associated with a ticket ID by using the Show only text filter in
the toolstrip.

To detach a ticket from a finding, select the finding in the Results List, then click Detach in the
Result Details. The link to the ticket is removed from the Result Details pane. This operation does
not remove the ticket in your BTT.

Note You cannot manage existing BBT tickets in the Polyspace desktop interface.

 Track Issue in Bug Tracking Tool

1-47

Code Prover Analysis Following Red and Orange Checks
Polyspace considers that all execution paths that contain a run-time error terminate at the location of
the error. For a given execution path, Polyspace highlights the first occurrence of a run-time error as
a red or orange check and excludes that path from consideration. Therefore:

• Following a red check, Polyspace does not analyze the remaining code in the same scope as the
check.

• Following an orange check, Polyspace analyzes the remaining code. But it considers only a
reduced subset of execution paths that did not contain the run-time error. Therefore, if a green
check occurs on an operation after an orange check, it means that the operation does not cause a
run-time error only for this reduced set of execution paths.

Exceptions to this behavior can occur. For instance:

• For an orange overflow, if you specify warn-with-wrap-around or allow for Overflow
mode for signed integer (-signed-integer-overflows) or Overflow mode for
unsigned integer (-unsigned-integer-overflows), Polyspace wraps the result of an
overflow and does not terminate the execution paths.

• For a subnormal float result, if you specify warn-all for Subnormal detection mode (-
check-subnormal), Polyspace does not terminate the execution paths with subnormal
results.

For more information on analysis options, see the documentation for Polyspace Code Prover or
Polyspace Code Prover Server.

The path containing a run-time error is terminated for the following reasons:

• The state of the program is unknown following the error. For instance, following an Illegally
dereferenced pointer error on an operation x=*ptr, the value of x is unknown.

• You can review an error as early in your code as possible, because the first error on an execution
path is shown in the verification results.

• You do not have to review and then fix or justify the same result more than once. For instance,
consider these statements, where the vertical ellipsis represents code in which the variable i is
not modified.

x = arr[i];
.
.
y = arr[i];

If an orange Out of bounds array index check appears on x=arr[i], it means that i can be
outside the array bounds. You do not want to review another orange check on y=arr[i] arising
from the same cause.

Use these two rules to understand your checks. The following examples show how the two rules can
result in checks that can be misleading when viewed out of context. Understand the examples below
thoroughly to practice reviewing checks in context of the remaining code.

Code Following Red Check
The following example shows what happens after a red check:

1 Interpret Polyspace Code Prover Access Results

1-48

void red(void)
{
int x;
x = 1 / x ;
x = x + 1;
}

When Polyspace verification reaches the division by x, x has not yet been initialized. Therefore, the
software generates a red Non-initialized local variable check for x.

Execution paths beyond division by x are stopped. No checks are generated for the statement x = x
+ 1;.

Green Check Following Orange Check
The following example shows how a green check can result from a previous orange check. An orange
check terminates execution paths that contain an error. A green check on an operation after an
orange check means that the operation does not cause a run-time error only for the remaining
execution paths.
extern int Read_An_Input(void);
void propagate(void)
{
 int x;
 int y[100];
 x = Read_An_Input();
 y[x] = 0;
 y[x] = 0;
}

In this function:

• x is assigned the return value of Read_An_Input. After this assignment, the software estimates
the range of x as [-2^31, 2^31-1].

• The first y[x]=0; shows an Out of bounds array index error because x can have negative
values.

• After the first y[x]=0;, from the size of y, the software estimates x to be in the range [0,99].
• The second y[x]=0; shows a green check because x lies in the range [0,99].

Gray Check Following Orange Check
The following example shows how a gray check can result from a previous orange check.

Consider the following example:

extern int read_an_input(void);

void main(void)
{
 int x;
 int y[100];
 x = read_an_input();
 y[x] = 0;
 y[x-1] = (1 / x) + x ;
 if (x == 0)
 y[x] = 1;
}

 Code Prover Analysis Following Red and Orange Checks

1-49

 From the gray check, you can trace backwards as follows:

• The line y[x]=1; is unreachable.
• Therefore, the test to assess whether x = 0 is always false.
• The return value of read_an_input() is never equal to 0.

However, read_an_input can return any value in the full integer range, so this is not the correct
explanation.

Instead, consider the execution path leading to the gray code:

• The orange Out of bounds array index check on y[x]=0; means that subsequent lines deal
with x in [0,99].

• The orange Division by Zero check on the division by x means that x cannot be equal to 0 on the
subsequent lines. Therefore, following that line, x is in [1,99].

• Therefore, x is never equal to 0 in the if condition. Also, the array access through y[x-1] shows
a green check.

Red Check Following Orange Check
The following example shows how a red error can reveal a bug which occurred on previous lines.

%% file1.c %%

void f(int);
int read_an_input(void);

int main() {
 int x,old_x;
 x = read_an_input();
 old_x = x;
 if (x<0 || x>10)
 return 1;
 f(x);
 x = 1 / old_x;
 // Red Division by Zero
 return 0;
}

%% file2.c %%

#include <math.h>

void f(int a) {
 int tmp;
 tmp = sqrt(0-a);
}

A red check occurs on x=1/old_x; in file1.c because of the following sequence of steps during
verification:

1 When x is assigned to old_x in file1.c, the verification assumes that x and old_x have the
full range of an integer, that is [-2^31 , 2^31-1].

2 Following the if clause in file1.c, x is in [0,10]. Because x and old_x are equal, Polyspace
considers that old_x is in [0,10] as well.

3 When x is passed to f in file1.c, the only possible value that x can have is 0. All other values
lead to a run-time exception in file2.c, that is tmp = sqrt(0–a);.

4 A red error occurs on x=1/old_x; in file1.c because the software assumes old_x to be 0 as
well.

1 Interpret Polyspace Code Prover Access Results

1-50

Red Checks in Unreachable Code
Code Prover can sometimes show red checks in code that is supposed to be unreachable and gray.
When propagating variable ranges, Code Prover sometimes makes approximations. In making these
approximations, Code Prover might consider an otherwise unreachable branch as reachable. If an
error appears in that unreachable branch, it is colored red.

Consider the statement:

if (test_var == 5) {
 // Code Section
}

If test_var does not have the value 5, the if branch is unreachable. If Code Prover makes an
approximation because of which test_var acquires the value 5, the branch is now reachable and
can show checks of other colors.

Use this figure to understand the effect of approximations. Because of approximations, a check color
that is higher up can supersede the colors below. A check that should be red or green (indicating a
definite error or definite absence of error) can become orange because a variable acquires extra
values that cannot occur at run time. A check that should be gray can show red, green and orange
checks because Code Prover considers an unreachable branch as reachable.

See Also

Related Examples
• “Interpret Polyspace Code Prover Access Results” on page 1-2
• “Order of Code Prover Run-Time Checks” on page 1-52

 Code Prover Analysis Following Red and Orange Checks

1-51

Order of Code Prover Run-Time Checks
If multiple checks are performed on the same operation, Code Prover performs them in a specific
order. The order of checks is important only if one of the checks is not green. If a check is red, the
subsequent checks are not performed. If a check is orange, the subsequent checks are performed for
a reduced set of values. For details, see “Code Prover Analysis Following Red and Orange Checks” on
page 1-48.

A simple example is the order of checks on a pointer dereference. Code Prover first checks if the
pointer is initialized and then checks if the pointer points to a valid location. The check Illegally
dereferenced pointer follows the check Non-initialized local variable.

The order of checks can be nontrivial if one of the operands in a binary operation is a floating-point
variable. Code Prover checks the operation in this order:

1 Invalid operation on floats: If you enable the option to consider non-finite floats, this
check determines if the operation can result in NaN.

2 Overflow: This check determines if the result overflows.

If you enable the option to consider non-finite floats, this check determines if the operation can
result in infinities.

3 Subnormal float: If you enable the subnormal detection mode, this check determines if the
operation can result in subnormal values.

For instance, suppose you enable options to forbid infinities, NaNs and subnormal results. In this
example, the operation y = x + 0; is checked for all three issues. The operation appears red but
consists of three checks: an orange Invalid operation on floats, an orange Overflow, and a red
Subnormal float check.

#include <float.h>
#include <assert.h>

double input();

int main() {
 double x = input();
 double y;
 assert (x != x || x > DBL_MAX || (x > 0. && x < DBL_MIN));
 y = x + 0.;
 return 0;
}

At the + operation, x can have three groups of values: x is NaN, x > DBL_MAX, and x > 0. && x <
DBL_MIN.

The checks are performed in this order:

1 Invalid operation on floats: The check is orange because one execution path considers that x
can be NaN.

For the next checks, this path is not considered.
2 Overflow: The check is orange because one group of execution paths considers that x >

DBL_MAX. For this group of paths, the + operation can result in infinity.

For the next check, this group of paths is not considered.

1 Interpret Polyspace Code Prover Access Results

1-52

3 Subnormal float: On the remaining group of execution paths, x > 0. && x < DBL_MIN. All
values of x cause subnormal results. Therefore, this check is red.

The message on the Result Details pane reflects this reduction in paths. The message for the
Subnormal float check states (when finite) to show that infinite values were removed from
consideration.

The values for the left and right operands reflect all values before the operation, and not the reduced
set of values. Therefore, the left operand still shows Inf and NaN even though these values were not
considered for the check.

See Also

More About
• “Code Prover Analysis Following Red and Orange Checks” on page 1-48

 Order of Code Prover Run-Time Checks

1-53

Orange Checks in Code Prover

In this section...
“When Orange Checks Occur” on page 1-54
“Why Review Orange Checks” on page 1-55
“How to Review Orange Checks” on page 1-55
“How to Reduce Orange Checks” on page 1-55

When Orange Checks Occur
An orange check indicates that Polyspace detects a possible run-time error but cannot prove it. A
check on an operation appears orange if both conditions are true:

First condition Second condition Example
The operation occurs multiple
times on an execution path or
on multiple execution paths.

During static verification, the
operation fails only a fraction of
times or only on a fraction of
paths.

The operation occurs in:

• A loop with more than one
iterations.

• A function that is called
more than once.

The operation involves a
variable that can take multiple
values.

During static verification, the
operation fails only for a
fraction of values.

The operation involves a
volatile variable.

During static verification, Polyspace can consider more execution paths than the execution paths that
occur during run time. If an operation fails on a subset of paths, Polyspace cannot determine if that
subset actually occurs during run time. Therefore, instead of a red check, it produces an orange
check on the operation.

Orange Checks from Multiple Paths

Consider this example:

void main() {
 func(1);
 func(0);
}

double func(int value) {
 return (1.0/value); //Orange check
}

func is called twice with two arguments. Only one of the calls results in a division by zero in the body
of func. Code Prover shows this result as an orange Division by zero check.

Orange Checks from Multiple Values

Consider this example:

1 Interpret Polyspace Code Prover Access Results

1-54

double func(int value) {
 int reducedValue = value%21 - 10; // Result in [-10,10]
 return 1.0/reducedValue; //Orange check
}

If the call context of func is unknown, Code Prover assumes that its argument value can take any
int value. As a result, reducedValue can take any value in [-10,10]. One of these values is zero,
which causes a division by zero in func. Code Prover shows this result as an orange Division by
zero check.

Why Review Orange Checks
Considering a superset of actual execution paths is a sound approximation because Polyspace does
not lose information. If an operation contains a run-time error, Polyspace does not produce a green
check on the operation. If Polyspace cannot prove the run-time error because of approximations, it
produces an orange check. Therefore, you must review orange checks.

Examples of Polyspace approximations include:

• Approximating the range of a variable at a certain point in the execution path. For instance,
Polyspace can approximate the range {-1} U [0,10] of a float variable by [-1,10].

• Approximating the interleaving of instructions in multitasking code. For instance, even if certain
instructions in a pair of tasks cannot interrupt each other, Polyspace verification might not take
that into account.

How to Review Orange Checks
To ensure that an operation does not fail during run time:

1 Determine if the execution paths on which the operation fails can actually occur.

For more information, see “Interpret Polyspace Code Prover Access Results” on page 1-2.
2 If any of the execution paths can occur, fix the cause of the failure.
3 If the execution paths cannot occur, enter a comment in your Polyspace result or source code,

describing why they cannot occur. See “Address Polyspace Results Through Bug Fixes or
Justifications” on page 2-2.

In a later verification, you can import these comments into your results. Then, if the orange
check persists in the later verification, you do not have to review it again.

How to Reduce Orange Checks
Polyspace performs approximations because of one of the following.

• Your code does not contain complete information about run-time execution. For example, your
code is partially developed or contains variables whose values are known only at run time.

If you want fewer orange checks, provide the information that Polyspace requires.
• Your code is very complex. For example, there can be multiple type conversions or multiple goto

statements.

 Orange Checks in Code Prover

1-55

If you want fewer orange checks, reduce the complexity of your code and follow recommended
coding practices.

• Polyspace must complete the verification in reasonable time and use reasonable computing
resources.

If you want fewer orange checks, improve the verification precision. But higher precision also
increases verification time.

For more information , see Provide Context for Verification, Follow Coding Rules, and Improve
Verification Precision in the documentation for Polyspace Code Prover.

See Also

More About
• “Managing Orange Checks” on page 1-57
• “Critical Orange Checks” on page 1-61

1 Interpret Polyspace Code Prover Access Results

1-56

Managing Orange Checks
Polyspace checks every operation in your code for certain run-time errors. Therefore, you can have
several orange checks in your verification results. To avoid spending unreasonable time on an orange
check review, you must develop an efficient review process.

Depending on your stage of software development and quality goals, you can choose to:

• Review all red checks and critical orange checks.
• Review all red checks and all orange checks.

To see only red and critical orange checks, from the drop-down list in the left of the Results List
pane toolbar, select Critical checks.

 Managing Orange Checks

1-57

Software Development Stage
Development Stage Situation Review Process
Initial stage or unit development
stage

In initial stages of development,
you can have partially
developed code or want to verify
each source file independently.
In that case, it is possible that:

• You have not defined all your
functions and class methods.

• You do not have a main
function

Because of insufficient
information in the code,
Polyspace makes assumptions
that result in many orange
checks. For instance, if you use
the default configuration,
Polyspace assumes full range for
inputs of functions that are not
called in the code.

In the initial stages of
development, review all red
checks. For orange checks,
depending on your
requirements, do one of the
following:

• You want your partially
developed code to be free of
errors independent of the
remaining code. For
instance, you want your
functions to not cause run-
time errors for any input.

If so, review orange checks
at this stage.

• You might want your
partially developed code to
be free of errors only in the
context of the remaining
code.

If so, do one of the following:

• Ignore orange checks at
this stage.

• Provide the context and
then review orange
checks. For instance, you
can provide stubs for
undefined functions to
emulate them more
accurately.

For more information, see
Provide Context for
Verification in the
documentation for
Polyspace Code Prover or
Polyspace Code Prover
Server.

1 Interpret Polyspace Code Prover Access Results

1-58

Development Stage Situation Review Process
Later stage or integration stage In later stages of development,

you have provided all your
source files. However, it is
possible that your code does not
contain all information required
for verification. For example,
you have variables whose values
are known only at run time.

Depending on the time you want
to spend, do one of the
following:

• Review red checks only.
• Review red and critical

orange checks.

Final stage • You have provided all your
source files.

• You have emulated run-time
environment accurately
through the verification
options.

Depending on the time you want
to spend, do one of the
following:

• Review red checks and
critical orange checks.

• Review red checks and all
orange checks.

For each orange check:

• If the check indicates a run-
time error, fix the cause of
the error.

• If the check indicates a
Polyspace approximation,
enter a comment in your
results or source code.

As part of your final release
process, you can have one of
these criteria:

• All red and critical orange
checks must be reviewed and
justified.

• All red and orange checks
must be reviewed and
justified.

To justify a check, assign the
Status of No action planned
or Justified to the check.

Quality Goals
For critical applications, you must review all red and orange checks.

• If an orange check indicates a run-time error, fix the cause of the error.
• If an orange check indicates a Polyspace approximation, enter a comment in your results or source

code.

 Managing Orange Checks

1-59

As part of your final release process, review and justify all red and orange checks. To justify a check,
assign the Status of No action planned or Justified to the check.

For noncritical applications, you can choose whether or not to review the noncritical orange checks.

See Also

More About
• “Orange Checks in Code Prover” on page 1-54

1 Interpret Polyspace Code Prover Access Results

1-60

Critical Orange Checks
The software identifies a subset of orange checks that are most likely run-time errors. If you select
Critical checks from the drop-down list in the left of the Results List pane toolbar, you can view
this subset.

These orange checks are related to path and bounded input values. Here, input values refer to values
that are external to the application. Examples include:

• Inputs to functions called by generated main. For more information on functions called by
generated main, see Functions to call (-main-generator-calls). For more information
on analysis options, see the documentation for Polyspace Code Prover or Polyspace Code Prover
Server.

• Global and volatile variables.
• Data returned by a stubbed function. The data can be the value returned by the function or a

function parameter modified through a pointer.

Path
The following example shows a path-related orange check that might be identified as a potential run-
time error.

Consider the following code.

void path(int x) {
 int result;
 result = 1 / (x - 10);
 // Orange division by zero
 }

void main() {
 path(1);
 path(10);
 }

The software identifies the orange ZDV check as a potential error. The Result Details pane indicates
the potential error:

...
Warning: scalar division by zero may occur
...

This Division by zero check on result=1/(x-10) is orange because:

• path(1) does not cause a division by zero error.
• path(10) causes a division by zero error.

Polyspace indicates the definite division by zero error through a Non-terminating call error on
path(10). If you select the red check on path(10), the Result Details pane provides the following
information:

NTC Reason for the NTC: {path.x=10)

 Critical Orange Checks

1-61

Bounded Input Values
Most input values can be bounded by data range specifications (DRS). The following example shows
an orange check related to bounded input values that might be identified as a potential run-time
error.

int tab[10];
extern int val;
// You specify that val is in [5..10]

void assignElement(int index) {
 int result;
 result = tab[index];
 // Orange Out of bounds array index
 }
void main(void) {
 assignElement(val);
}

If you specify a PERMANENT data range of 5 to 10 for the variable val, verification generates an
orange Out of bounds array index check on tab[index]. The Result Details pane provides
information about the potential error:
Warning: array index may be outside bounds: [0..9]
This check may be an issue related to bounded input values
Verifying DRS on extern variable val may remove this orange.
 array size: 10
 array index value: [5 .. 10]

Unbounded Input Values
The following example shows an orange check related to unbounded input values that might be
identified as a potential run-time error:

int tab[10];
extern int val;

void assignElement(int index) {
 int result;
 result = tab[index];
 // Orange Out of bounds array index
 }
void main(void) {
 assignElement(val);
}

The verification generates an orange Out of bounds array index check on tab[index]. The Result
Details pane provides information about the potential error:
Warning: array index may be outside bounds: [0..9]
This check may be an issue related to unbounded input values
If appropriate, applying DRS to extern variable val may remove this orange.
 array size: 10
 array index value: [-231 .. 231-1]

1 Interpret Polyspace Code Prover Access Results

1-62

Software Quality Objectives
The Software Quality Objectives or SQOs are a set of thresholds against which you can compare your
verification results. You can develop a review process based on the Software Quality Objectives. In
your review process, you consider only those results that cause your project to fail a certain SQO
level.

You can use a predefined SQO level or define your own SQOs. Following are the quality thresholds
specified by each predefined SQO.

SQO Level 1

Metric Threshold Value
Comment density of a file 20
Number of paths through a function 80
Number of goto statements 0
Cyclomatic complexity 10
Number of calling functions 5
Number of calls 7
Number of parameters per function 5
Number of instructions per function 50
Number of call levels in a function 4
Number of return statements in a function 1
Language scope, an indicator of the cost of
maintaining or changing functions. Calculated as
follows:
(N1+N2) / (n1+n2)

• n1 — Number of different operators
• N1 — Total number of operators
• n2 — Number of different operands
• N2 — Total number of operands

4

Number of recursions 0
Number of direct recursions 0

 Software Quality Objectives

1-63

Metric Threshold Value
Number of unjustified violations of the following
MISRA C:2004 rules:

• 5.2
• 8.11, 8.12
• 11.2, 11.3
• 12.12
• 13.3, 13.4, 13.5
• 14.4, 14.7
• 16.1, 16.2, 16.7
• 17.3, 17.4, 17.5, 17.6
• 18.4
• 20.4

0

Number of unjustified violations of the following
MISRA C:2012 rules:

• 8.8, 8.11, and 8.13
• 11.1, 11.2, 11.4, 11.5, 11.6, and 11.7
• 14.1 and 14.2
• 15.1, 15.2, 15.3, and 15.5
• 17.1 and 17.2
• 18.3, 18.4, 18.5, and 18.6
• 19.2
• 21.3

0

Number of unjustified violations of the following
MISRA C++ rules:

• 2-10-2
• 3-1-3, 3-3-2, 3-9-3
• 5-0-15, 5-0-18, 5-0-19, 5-2-8, 5-2-9
• 6-2-2, 6-5-1, 6-5-2, 6-5-3, 6-5-4, 6-6-1, 6-6-2,

6-6-4, 6-6-5
• 7-5-1, 7-5-2, 7-5-4
• 8-4-1
• 9-5-1
• 10-1-2, 10-1-3, 10-3-1, 10-3-2, 10-3-3
• 15-0-3, 15-1-3, 15-3-3, 15-3-5, 15-3-6, 15-3-7,

15-4-1, 15-5-1, 15-5-2
• 18-4-1

0

1 Interpret Polyspace Code Prover Access Results

1-64

SQO Level 2

In addition to all the requirements of SQO Level 1, this level includes the following thresholds:

Metric Threshold Value
Number of unjustified red checks 0
Number of unjustified Non-terminating call
and Non-terminating loop checks

0

SQO Level 3

In addition to all the requirements of SQO Level 2, this level includes the following thresholds:

Metric Threshold Value
Number of unjustified gray Unreachable code
checks

0

SQO Level 4

In addition to all the requirements of SQO Level 3, this level includes the following thresholds:

Metric Threshold Value
Percentage of justified orange checks, calculated
as the number of green and justified orange
checks divided by the total number of green and
orange checks.

Invalid C++ specific operations: 50
Correctness condition: 60
Division by zero: 80
Uncaught exception: 50
Function not returning value: 80
Illegally dereferenced pointer: 60
Return value not initialized: 80
Non-initialized local variable: 80
Non-initialized pointer: 60
Non-initialized variable: 60
Null this-pointer calling method: 50
Incorrect object oriented programming:
50
Out of bounds array index: 80
Overflow: 60
Invalid shift operations: 80
User assertion: 60

SQO Level 5

In addition to all the requirements of SQO Level 4, this level includes the following thresholds:

 Software Quality Objectives

1-65

Metric Threshold Value
Number of unjustified violations of the following
MISRA C:2004 rules:

• 6.3
• 8.7
• 9.2, 9.3
• 10.3, 10.5
• 11.1, 11.5
• 12.1, 12.2, 12.5, 12.6, 12.9, 12.10
• 13.1, 13.2, 13.6
• 14.8, 14.10
• 15.3
• 16.3, 16.8, 16.9
• 19.4, 19.9, 19.10, 19.11, 19.12
• 20.3

0

Number of unjustified violations of the following
MISRA C:2012 rules:

• 11.8
• 12.1 and 12.3
• 13.2 and 13.4
• 14.4
• 15.6 and 15.7
• 16.4 and 16.5
• 17.4
• 20.4, 20.6, 20.7, 20.9, and 20.11

0

Number of unjustified violations of the following
MISRA C++ rules:

• 3-4-1, 3-9-2
• 4-5-1
• 5-0-1, 5-0-2, 5-0-7, 5-0-8, 5-0-9, 5-0-10, 5-0-13,

5-2-1, 5-2-2, 5-2-7, 5-2-11, 5-3-3, 5-2-5, 5-2-6,
5-3-2, 5-18-1

• 6-2-1, 6-3-1, 6-4-2, 6-4-6, 6-5-3
• 8-4-3, 8-4-4, 8-5-2, 8-5-3
• 11-0-1
• 12-1-1, 12-8-2
• 16-0-5, 16-0-6, 16-0-7, 16-2-2, 16-3-1

0

Percentage of justified orange checks, calculated
as the number of green and justified orange

Invalid C++ specific operations: 70
Correctness condition: 80

1 Interpret Polyspace Code Prover Access Results

1-66

Metric Threshold Value
checks divided by the total number of green and
orange checks.

Division by zero: 90
Uncaught exception: 70
Function not returning value: 90
Illegally dereferenced pointer: 70
Return value not initialized: 90
Non-initialized local variable: 90
Non-initialized pointer: 70
Non-initialized variable: 70
Null this-pointer calling method: 70
Incorrect object oriented programming:
70
Out of bounds array index: 90
Overflow: 80
Invalid shift operations: 90
User assertion: 80

SQO Level 6

In addition to all the requirements of SQO Level 5, this level includes the following thresholds:

Metric Threshold Value
Percentage of justified orange checks, calculated
as the number of green and justified orange
checks divided by the total number of green and
orange checks.

Invalid C++ specific operations: 90
Correctness condition: 100
Division by zero: 100
Uncaught exception: 90
Function not returning value: 100
Illegally dereferenced pointer: 80
Return value not initialized: 100
Non-initialized local variable: 100
Non-initialized pointer: 80
Non-initialized variable: 80
Null this-pointer calling method: 90
Incorrect object oriented programming:
90
Out of bounds array index: 100
Overflow: 100
Invalid shift operations: 100
User assertion: 100

 Software Quality Objectives

1-67

Exhaustive

In addition to all the requirements of SQO Level 6, this level includes the following thresholds.
The thresholds for coding rule violations apply only if you check for coding rule violations.

Metric Threshold Value
Number of unjustified MISRA C and MISRA C++
coding rule violations

0

Number of unjustified red checks 0
Number of unjustified Non-terminating call
and Non-terminating loop checks

0

Number of unjustified gray Unreachable code
checks

0

Percentage of justified orange checks, calculated
as the number of green and justified orange
checks divided by the total number of green and
orange checks.

100

For information on the rationales behind these levels, see Software Quality Objectives for Source
Code.

Comparing Verification Results Against Software Quality Objectives
You can compare your verification results against SQOs either in the Polyspace Access web interface
or the Polyspace user interface.

• In the Polyspace Access web interface, you can first determine whether your project fails to attain
a certain Quality Objective threshold by looking at the Quality Objectives card on the Project
Overview dashboard.

The card shows the percentage of results that you have already fixed or justified in order to attain
the threshold. Click the number of remaining findings to open those findings in the Results List.
For a more detailed view of the quality of your code against all quality objectives thresholds, open
the Quality Objectives dashboard. For more information, see the “Quality Objectives Dashboard”
on page 1-21.

You can also generated reports that show the PASS or FAIL status using the templates
SoftwareQualityObjectives_Summary and SoftwareQualityObjectives. See Bug

1 Interpret Polyspace Code Prover Access Results

1-68

https://www.mathworks.com/content/dam/mathworks/tag-team/Objects/p/72337_Software_Quality_Objectives_V3.0.pdf
https://www.mathworks.com/content/dam/mathworks/tag-team/Objects/p/72337_Software_Quality_Objectives_V3.0.pdf

Finder and Code Prover report (-report-template). For more information on analysis
options, see the documentation for Polyspace Code Prover or Polyspace Code Prover Server.

• In the Polyspace user interface, you can use the menu in the Results List toolbar to display only
those results that you must fix or justify to attain a certain Software Quality Objective.

To activate the SQO options in this menu, select Tools > Preferences. On the Review Scope tab,
select Include Quality Objectives Scope.

Note You cannot use the menu in the user interface to suppress red or gray checks. Therefore, you
cannot directly compare your project against predefined SQO levels 1, 2 and 3 in the Polyspace user
interface. However, in the Polyspace Access web interface, you can compare your project against all
predefined SQO levels.

 Software Quality Objectives

1-69

Software Quality Objective Subsets (C:2004)
In this section...
“Rules in SQO-Subset1” on page 1-70
“Rules in SQO-Subset2” on page 1-71

Rules in SQO-Subset1
In Polyspace Code Prover, the following set of coding rules will typically reduce the number of
unproven results.

Rule number Description
5.2 Identifiers in an inner scope shall not use the same name as an identifier in an

outer scope, and therefore hide that identifier.
8.11 The static storage class specifier shall be used in definitions and declarations of

objects and functions that have internal linkage.
8.12 When an array is declared with external linkage, its size shall be stated

explicitly or defined implicitly by initialization.
11.2 Conversion shall not be performed between a pointer to an object and any type

other than an integral type, another pointer to a object type or a pointer to void.
11.3 A cast should not be performed between a pointer type and an integral type.
12.12 The underlying bit representations of floating-point values shall not be used.
13.3 Floating-point expressions shall not be tested for equality or inequality.
13.4 The controlling expression of a for statement shall not contain any objects of

floating type.
13.5 The three expressions of a for statement shall be concerned only with loop

control.
14.4 The goto statement shall not be used.
14.7 A function shall have a single point of exit at the end of the function.
16.1 Functions shall not be defined with variable numbers of arguments.
16.2 Functions shall not call themselves, either directly or indirectly.
16.7 A pointer parameter in a function prototype should be declared as pointer to

const if the pointer is not used to modify the addressed object.
17.3 >, >=, <, <= shall not be applied to pointer types except where they point to

the same array.
17.4 Array indexing shall be the only allowed form of pointer arithmetic.
17.5 The declaration of objects should contain no more than 2 levels of pointer

indirection.
17.6 The address of an object with automatic storage shall not be assigned to an

object that may persist after the object has ceased to exist.
18.3 An area of memory shall not be reused for unrelated purposes.
18.4 Unions shall not be used.

1 Interpret Polyspace Code Prover Access Results

1-70

Rule number Description
20.4 Dynamic heap memory allocation shall not be used.

Note Polyspace software does not check MISRA rule 18.3.

Rules in SQO-Subset2
Good design practices generally lead to less code complexity, which can reduce the number of
unproven results in Polyspace Code Prover. The following set of coding rules enforce good design
practices. The SQO-subset2 option checks the rules in SQO-subset1 and some additional rules.

Rule number Description
5.2 Identifiers in an inner scope shall not use the same name as an identifier in an

outer scope, and therefore hide that identifier.
6.3 typedefs that indicate size and signedness should be used in place of the basic

types
8.7 Objects shall be defined at block scope if they are only accessed from within a

single function
8.11 The static storage class specifier shall be used in definitions and declarations

of objects and functions that have internal linkage.
8.12 When an array is declared with external linkage, its size shall be stated

explicitly or defined implicitly by initialization.
9.2 Braces shall be used to indicate and match the structure in the nonzero

initialization of arrays and structures
9.3 In an enumerator list, the = construct shall not be used to explicitly initialize

members other than the first, unless all items are explicitly initialized
10.3 The value of a complex expression of integer type may only be cast to a type

that is narrower and of the same signedness as the underlying type of the
expression

10.5 Bitwise operations shall not be performed on signed integer types
11.1 Conversion shall not be performed between a pointer to a function and any

type other than an integral type
11.2 Conversion shall not be performed between a pointer to an object and any type

other than an integral type, another pointer to a object type or a pointer to
void.

11.3 A cast should not be performed between a pointer type and an integral type.
11.5 Type casting from any type to or from pointers shall not be used
12.1 Limited dependence should be placed on C's operator precedence rules in

expressions
12.2 The value of an expression shall be the same under any order of evaluation that

the standard permits
12.5 The operands of a logical && or || shall be primary-expressions

 Software Quality Objective Subsets (C:2004)

1-71

Rule number Description
12.6 Operands of logical operators (&&, || and !) should be effectively Boolean.

Expression that are effectively Boolean should not be used as operands to
operators other than (&&, || or !)

12.9 The unary minus operator shall not be applied to an expression whose
underlying type is unsigned

12.10 The comma operator shall not be used
12.12 The underlying bit representations of floating-point values shall not be used.
13.1 Assignment operators shall not be used in expressions that yield Boolean

values
13.2 Tests of a value against zero should be made explicit, unless the operand is

effectively Boolean
13.3 Floating-point expressions shall not be tested for equality or inequality.
13.4 The controlling expression of a for statement shall not contain any objects of

floating type.
13.5 The three expressions of a for statement shall be concerned only with loop

control.
13.6 Numeric variables being used within a “for” loop for iteration counting should

not be modified in the body of the loop
14.4 The goto statement shall not be used.
14.7 A function shall have a single point of exit at the end of the function.
14.8 The statement forming the body of a switch, while, do while or for statement

shall be a compound statement
14.10 All if else if constructs should contain a final else clause
15.3 The final clause of a switch statement shall be the default clause
16.1 Functions shall not be defined with variable numbers of arguments.
16.2 Functions shall not call themselves, either directly or indirectly.
16.3 Identifiers shall be given for all of the parameters in a function prototype

declaration
16.7 A pointer parameter in a function prototype should be declared as pointer to

const if the pointer is not used to modify the addressed object.
16.8 All exit paths from a function with non-void return type shall have an explicit

return statement with an expression
16.9 A function identifier shall only be used with either a preceding &, or with a

parenthesized parameter list, which may be empty
17.3 >, >=, <, <= shall not be applied to pointer types except where they point to

the same array.
17.4 Array indexing shall be the only allowed form of pointer arithmetic.
17.5 The declaration of objects should contain no more than 2 levels of pointer

indirection.
17.6 The address of an object with automatic storage shall not be assigned to an

object that may persist after the object has ceased to exist.

1 Interpret Polyspace Code Prover Access Results

1-72

Rule number Description
18.3 An area of memory shall not be reused for unrelated purposes.
18.4 Unions shall not be used.
19.4 C macros shall only expand to a braced initializer, a constant, a parenthesized

expression, a type qualifier, a storage class specifier, or a do-while-zero
construct

19.9 Arguments to a function-like macro shall not contain tokens that look like
preprocessing directives

19.10 In the definition of a function-like macro each instance of a parameter shall be
enclosed in parentheses unless it is used as the operand of # or ##

19.11 All macro identifiers in preprocessor directives shall be defined before use,
except in #ifdef and #ifndef preprocessor directives and the defined() operator

19.12 There shall be at most one occurrence of the # or ## preprocessor operators
in a single macro definition.

20.3 The validity of values passed to library functions shall be checked.
20.4 Dynamic heap memory allocation shall not be used.

Note Polyspace software does not check MISRA rule 20.3 directly.

However, you can check this rule by writing manual stubs that check the validity of values. For
example, the following code checks the validity of an input being greater than 1:

int my_system_library_call(int in) {assert (in>1); if random \
return -1 else return 0; }

See Also

More About
• “Interpret Polyspace Code Prover Access Results” on page 1-2

 Software Quality Objective Subsets (C:2004)

1-73

Software Quality Objective Subsets (AC AGC)
In this section...
“Rules in SQO-Subset1” on page 1-74
“Rules in SQO-Subset2” on page 1-74

Rules in SQO-Subset1
In Polyspace Code Prover, the following set of coding rules will typically reduce the number of
unproven results.

Rule number Description
5.2 Identifiers in an inner scope shall not use the same name as an identifier in an

outer scope, and therefore hide that identifier.
8.11 The static storage class specifier shall be used in definitions and declarations

of objects and functions that have internal linkage.
8.12 When an array is declared with external linkage, its size shall be stated

explicitly or defined implicitly by initialization.
11.2 Conversion shall not be performed between a pointer to an object and any type

other than an integral type, another pointer to a object type or a pointer to
void.

11.3 A cast should not be performed between a pointer type and an integral type.
12.12 The underlying bit representations of floating-point values shall not be used.
14.7 A function shall have a single point of exit at the end of the function.
16.1 Functions shall not be defined with variable numbers of arguments.
16.2 Functions shall not call themselves, either directly or indirectly.
17.3 >, >=, <, <= shall not be applied to pointer types except where they point to

the same array.
17.6 The address of an object with automatic storage shall not be assigned to an

object that may persist after the object has ceased to exist.
18.4 Unions shall not be used.

For more information about these rules, see MISRA AC AGC Guidelines for the Application of MISRA-
C:2004 in the Context of Automatic Code Generation.

Rules in SQO-Subset2
Good design practices generally lead to less code complexity, which can reduce the number of
unproven results in Polyspace Code Prover. The following set of coding rules enforce good design
practices. The SQO-subset2 option checks the rules in SQO-subset1 and some additional rules.

Rule number Description
5.2 Identifiers in an inner scope shall not use the same name as an identifier in an

outer scope, and therefore hide that identifier.

1 Interpret Polyspace Code Prover Access Results

1-74

Rule number Description
6.3 typedefs that indicate size and signedness should be used in place of the basic

types
8.7 Objects shall be defined at block scope if they are only accessed from within a

single function
8.11 The static storage class specifier shall be used in definitions and declarations

of objects and functions that have internal linkage.
8.12 When an array is declared with external linkage, its size shall be stated

explicitly or defined implicitly by initialization.
9.3 In an enumerator list, the = construct shall not be used to explicitly initialize

members other than the first, unless all items are explicitly initialized
11.1 Conversion shall not be performed between a pointer to a function and any

type other than an integral type
11.2 Conversion shall not be performed between a pointer to an object and any type

other than an integral type, another pointer to a object type or a pointer to
void.

11.3 A cast should not be performed between a pointer type and an integral type.
11.5 Type casting from any type to or from pointers shall not be used
12.2 The value of an expression shall be the same under any order of evaluation that

the standard permits
12.9 The unary minus operator shall not be applied to an expression whose

underlying type is unsigned
12.10 The comma operator shall not be used
12.12 The underlying bit representations of floating-point values shall not be used.
14.7 A function shall have a single point of exit at the end of the function.
16.1 Functions shall not be defined with variable numbers of arguments.
16.2 Functions shall not call themselves, either directly or indirectly.
16.3 Identifiers shall be given for all of the parameters in a function prototype

declaration
16.8 All exit paths from a function with non-void return type shall have an explicit

return statement with an expression
16.9 A function identifier shall only be used with either a preceding &, or with a

parenthesized parameter list, which may be empty
17.3 >, >=, <, <= shall not be applied to pointer types except where they point to

the same array.
17.6 The address of an object with automatic storage shall not be assigned to an

object that may persist after the object has ceased to exist.
18.4 Unions shall not be used.
19.9 Arguments to a function-like macro shall not contain tokens that look like

preprocessing directives
19.10 In the definition of a function-like macro each instance of a parameter shall be

enclosed in parentheses unless it is used as the operand of # or ##

 Software Quality Objective Subsets (AC AGC)

1-75

Rule number Description
19.11 All macro identifiers in preprocessor directives shall be defined before use,

except in #ifdef and #ifndef preprocessor directives and the defined() operator
19.12 There shall be at most one occurrence of the # or ## preprocessor operators

in a single macro definition.
20.3 The validity of values passed to library functions shall be checked.

Note Polyspace software does not check MISRA rule 20.3 directly.

However, you can check this rule by writing manual stubs that check the validity of values. For
example, the following code checks the validity of an input being greater than 1:

int my_system_library_call(int in) {assert (in>1); if random \
return -1 else return 0; }

For more information about these rules, see MISRA AC AGC Guidelines for the Application of MISRA-
C:2004 in the Context of Automatic Code Generation.

See Also

More About
• “Interpret Polyspace Code Prover Access Results” on page 1-2

1 Interpret Polyspace Code Prover Access Results

1-76

Software Quality Objective Subsets (C:2012)
In this section...
“Guidelines in SQO-Subset1” on page 1-77
“Guidelines in SQO-Subset2” on page 1-78

These subsets of MISRA C:2012 guidelines can have a direct or indirect impact on the precision of
your Polyspace results. When you set up coding rules checking, you can select these subsets.

Guidelines in SQO-Subset1
The following set of MISRA C:2012 coding guidelines typically reduces the number of unproven
results in Polyspace Code Prover.

Rule Description
8.8 The static storage class specifier shall be used in all declarations of objects and

functions that have internal linkage
8.11 When an array with external linkage is declared, its size should be explicitly

specified
8.13 A pointer should point to a const-qualified type whenever possible
11.1 Conversions shall not be performed between a pointer to a function and any other

type
11.2 Conversions shall not be performed between a pointer to an incomplete type and

any other type
11.4 A conversion should not be performed between a pointer to object and an integer

type
11.5 A conversion should not be performed from pointer to void into pointer to object
11.6 A cast shall not be performed between pointer to void and an arithmetic type
11.7 A cast shall not be performed between pointer to object and a non-integer

arithmetic type
14.1 A loop counter shall not have essentially floating type
14.2 A for loop shall be well-formed
15.1 The goto statement should not be used
15.2 The goto statement shall jump to a label declared later in the same function
15.3 Any label referenced by a goto statement shall be declared in the same block, or

in any block enclosing the goto statement
15.5 A function should have a single point of exit at the end
17.1 The features of <starg.h> shall not be used
17.2 Functions shall not call themselves, either directly or indirectly
18.3 The relational operators >, >=, < and <= shall not be applied to objects of

pointer type except where they point into the same object
18.4 The +, -, += and -= operators should not be applied to an expression of pointer

type

 Software Quality Objective Subsets (C:2012)

1-77

Rule Description
18.5 Declarations should contain no more than two levels of pointer nesting
18.6 The address of an object with automatic storage shall not be copied to another

object that persists after the first object has ceased to exist
19.2 The union keyword should not be used
21.3 The memory allocation and deallocation functions of <stdlib.h> shall not be used

Guidelines in SQO-Subset2
Good design practices generally lead to less code complexity, which can reduce the number of
unproven results in Polyspace Code Prover. The following set of coding rules enforce good design
practices. The SQO-subset2 option checks the rules in SQO-subset1 and some additional rules.

Rule Description
8.8 The static storage class specifier shall be used in all declarations of objects and

functions that have internal linkage
8.11 When an array with external linkage is declared, its size should be explicitly

specified
8.13 A pointer should point to a const-qualified type whenever possible
11.1 Conversions shall not be performed between a pointer to a function and any other

type
11.2 Conversions shall not be performed between a pointer to an incomplete type and

any other type
11.4 A conversion should not be performed between a pointer to object and an integer

type
11.5 A conversion should not be performed from pointer to void into pointer to object
11.6 A cast shall not be performed between pointer to void and an arithmetic type
11.7 A cast shall not be performed between pointer to object and a non-integer

arithmetic type
11.8 A cast shall not remove any const or volatile qualification from the type pointed to

by a pointer
12.1 The precedence of operators within expressions should be made explicit
12.3 The comma operator should not be used
13.2 The value of an expression and its persistent side effects shall be the same under

all permitted evaluation orders
13.4 The result of an assignment operator should not be used
14.1 A loop counter shall not have essentially floating type
14.2 A for loop shall be well-formed
14.4 The controlling expression of an if statement and the controlling expression of an

iteration-statement shall have essentially Boolean type
15.1 The goto statement should not be used
15.2 The goto statement shall jump to a label declared later in the same function

1 Interpret Polyspace Code Prover Access Results

1-78

Rule Description
15.3 Any label referenced by a goto statement shall be declared in the same block, or

in any block enclosing the goto statement
15.5 A function should have a single point of exit at the end
15.6 The body of an iteration- statement or a selection- statement shall be a compound-

statement
15.7 All if … else if constructs shall be terminated with an else statement
16.4 Every switch statement shall have a default label
16.5 A default label shall appear as either the first or the last switch label of a switch

statement
17.1 The features of <starg.h> shall not be used
17.2 Functions shall not call themselves, either directly or indirectly
17.4 All exit paths from a function with non-void return type shall have an explicit

return statement with an expression
18.3 The relational operators >, >=, < and <= shall not be applied to objects of

pointer type except where they point into the same object
18.4 The +, -, += and -= operators should not be applied to an expression of pointer

type
18.5 Declarations should contain no more than two levels of pointer nesting
18.6 The address of an object with automatic storage shall not be copied to another

object that persists after the first object has ceased to exist
19.2 The union keyword should not be used
20.4 A macro shall not be defined with the same name as a keyword
20.6 Tokens that look like a preprocessing directive shall not occur within a macro

argument
20.7 Expressions resulting from the expansion of macro parameters shall be enclosed

in parentheses
20.9 All identifiers used in the controlling expression of #if or #elif preprocessing

directives shall be #define'd before evaluation
20.11 A macro parameter immediately following a # operator shall not immediately be

followed by a ## operator
21.3 The memory allocation and deallocation functions of <stdlib.h> shall not be used

See Also

More About
• “Interpret Polyspace Code Prover Access Results” on page 1-2

 Software Quality Objective Subsets (C:2012)

1-79

Avoid Violations of MISRA C 2012 Rules 8.x
MISRA C:2012 rules 8.1-8.14 enforce good coding practices surrounding declarations and definitions.
If you follow these practices, you are less likely to have conflicting declarations or to unintentionally
modify variables.

If you do not follow these practices during coding, your code might require major changes later to be
MISRA C-compliant. You might have too many MISRA C violations. Sometimes, in fixing a violation,
you might violate another rule. Instead, keep these rules in mind when coding. Use the MISRA
C:2012 checker to spot any issues that you might have missed.

• Explicitly specify all data types in declarations.

Avoid implicit data types like this declaration of k:

extern void foo (char c, const k);

Instead use:

extern void foo (char c, const int k);

That way, you do not violate MISRA C:2012 Rule 8.1.
• When declaring functions, provide names and data types for all parameters.

Avoid declarations without parameter names like these declarations:

extern int func(int);
extern int func2();

Instead use:

extern int func(int arg);
extern int func2(void);

That way, you do not violate MISRA C:2012 Rule 8.2.
• If you want to use an object or function in multiple files, declare the object or function

once in only one header file.

To use an object in multiple source files, declare it as extern in a header file. Include the header
file in all the source files where you need the object. In one of those source files, define the object.
For instance:

/* header.h */
extern int var;

/* file1.c */
#include "header.h"
/* Some usage of var */

/* file2.c */
#include "header.h"
int var=1;

To use a function in multiple source files, declare it in a header file. Include the header file in all
the source files where you need the function. In one of those source files, define the function.

1 Interpret Polyspace Code Prover Access Results

1-80

That way, you do not violate MISRA C:2012 Rule 8.3, MISRA C:2012 Rule 8.4, MISRA
C:2012 Rule 8.5, or MISRA C:2012 Rule 8.6.

• If you want to use an object or function in one file only, declare and define the object or
function with the static specifier.

Make sure that you use the static specifier in all declarations and the definition. For instance,
this function func is meant to be used only in the current file:

static int func(void);
static int func(void){
}

That way, you do not violateMISRA C:2012 Rule 8.7 and MISRA C:2012 Rule 8.8.
• If you want to use an object in one function only, declare the object in the function body.

Avoid declaring the object outside the function.

For instance, if you use var in func only, do declare it outside the body of func:

int var;
void func(void) {
 var=1;
}

Instead use:

void func(void) {
 int var;
 var=1;
}

That way, you do not violate MISRA C:2012 Rule 8.7 and MISRA C:2012 Rule 8.9.
• If you want to inline a function, declare and define the function with the static
specifier.

Every time you add inline to a function definition, add static too:

static inline double func(int val);
static inline double func(int val) {
}

That way, you do not violate MISRA C:2012 Rule 8.10.
• When declaring arrays, explicitly specify their size.

Avoid implicit size specifications like this:

extern int32_t array[];

Instead use:

#define MAXSIZE 10
extern int32_t array[MAXSIZE];

That way, you do not violate MISRA C:2012 Rule 8.11.
• When declaring enumerations, try to avoid mixing implicit and explicit specifications.

 Avoid Violations of MISRA C 2012 Rules 8.x

1-81

Avoid mixing implicit and explicit specifications. You can specify the first enumeration constant
explicitly, but after that, use either implicit or explicit specifications. For instance, avoid this type
of mix:

enum color {red = 2, blue, green = 3, yellow};

Instead use:

enum color {red = 2, blue, green, yellow};

That way, you do not violate MISRA C:2012 Rule 8.12.
• When declaring pointers, point to a const-qualified type unless you want to use the

pointer to modify an object.

Point to a const-qualified type by default unless you intend to use the pointer for modifying the
pointed object. For instance, in this example, ptr is not used to modify the pointed object:

char last_char(const char * const ptr){
}

That way, you do not violate MISRA C:2012 Rule 8.13.

1 Interpret Polyspace Code Prover Access Results

1-82

Software Quality Objective Subsets (C++)

In this section...
“SQO Subset 1 – Direct Impact on Selectivity” on page 1-83
“SQO Subset 2 – Indirect Impact on Selectivity” on page 1-84

SQO Subset 1 – Direct Impact on Selectivity
The following set of MISRA C++ coding rules will typically improve the number of unproven results
in Polyspace Code Prover.

MISRA C++ Rule Description
2-10-2 Identifiers declared in an inner scope shall not hide an identifier declared in an outer

scope.
3-1-3 When an array is declared, its size shall either be stated explicitly or defined implicitly

by initialization.
3-3-2 The One Definition Rule shall not be violated.
3-9-3 The underlying bit representations of floating-point values shall not be used.
5-0-15 Array indexing shall be the only form of pointer arithmetic.
5-0-18 >, >=, <, <= shall not be applied to objects of pointer type, except where they point to

the same array.
5-0-19 The declaration of objects shall contain no more than two levels of pointer indirection.
5-2-8 An object with integer type or pointer to void type shall not be converted to an object

with pointer type.
5-2-9 A cast should not convert a pointer type to an integral type.
6-2-2 Floating-point expressions shall not be directly or indirectly tested for equality or

inequality.
6-5-1 A for loop shall contain a single loop-counter which shall not have floating type.
6-5-2 If loop-counter is not modified by -- or ++, then, within condition, the loop-counter shall

only be used as an operand to <=, <, > or >=.
6-5-3 The loop-counter shall not be modified within condition or statement.
6-5-4 The loop-counter shall be modified by one of: --, ++, -=n, or +=n ; where n remains

constant for the duration of the loop.
6-6-1 Any label referenced by a goto statement shall be declared in the same block, or in a

block enclosing the goto statement.
6-6-2 The goto statement shall jump to a label declared later in the same function body.
6-6-4 For any iteration statement there shall be no more than one break or goto statement

used for loop termination.
6-6-5 A function shall have a single point of exit at the end of the function.
7-5-1 A function shall not return a reference or a pointer to an automatic variable (including

parameters), defined within the function.

 Software Quality Objective Subsets (C++)

1-83

MISRA C++ Rule Description
7-5-2 The address of an object with automatic storage shall not be assigned to another object

that may persist after the first object has ceased to exist.
7-5-4 Functions should not call themselves, either directly or indirectly.
8-4-1 Functions shall not be defined using the ellipsis notation.
9-5-1 Unions shall not be used.
10-1-2 A base class shall only be declared virtual if it is used in a diamond hierarchy.
10-1-3 An accessible base class shall not be both virtual and nonvirtual in the same hierarchy.
10-3-1 There shall be no more than one definition of each virtual function on each path through

the inheritance hierarchy.
10-3-2 Each overriding virtual function shall be declared with the virtual keyword.
10-3-3 A virtual function shall only be overridden by a pure virtual function if it is itself

declared as pure virtual.
15-0-3 Control shall not be transferred into a try or catch block using a goto or a switch

statement.
15-1-3 An empty throw (throw;) shall only be used in the compound- statement of a catch

handler.
15-3-3 Handlers of a function-try-block implementation of a class constructor or destructor

shall not reference non-static members from this class or its bases.
15-3-5 A class type exception shall always be caught by reference.
15-3-6 Where multiple handlers are provided in a single try-catch statement or function-try-

block for a derived class and some or all of its bases, the handlers shall be ordered most-
derived to base class.

15-3-7 Where multiple handlers are provided in a single try-catch statement or function-try-
block, any ellipsis (catch-all) handler shall occur last.

15-4-1 If a function is declared with an exception-specification, then all declarations of the
same function (in other translation units) shall be declared with the same set of type-ids.

15-5-1 A class destructor shall not exit with an exception.
15-5-2 Where a function's declaration includes an exception-specification, the function shall

only be capable of throwing exceptions of the indicated type(s).
18-4-1 Dynamic heap memory allocation shall not be used.

SQO Subset 2 – Indirect Impact on Selectivity
Good design practices generally lead to less code complexity, which can improve the number of
unproven results in Polyspace Code Prover. The following set of coding rules may help to address
design issues in your code. The SQO-subset2 option checks the rules in SQO-subset1 and SQO-
subset2.

MISRA C++ Rule Description
2-10-2 Identifiers declared in an inner scope shall not hide an identifier declared in an outer

scope.

1 Interpret Polyspace Code Prover Access Results

1-84

MISRA C++ Rule Description
3-1-3 When an array is declared, its size shall either be stated explicitly or defined implicitly

by initialization.
3-3-2 If a function has internal linkage then all re-declarations shall include the static storage

class specifier.
3-4-1 An identifier declared to be an object or type shall be defined in a block that minimizes

its visibility.
3-9-2 typedefs that indicate size and signedness should be used in place of the basic

numerical types.
3-9-3 The underlying bit representations of floating-point values shall not be used.
4-5-1 Expressions with type bool shall not be used as operands to built-in operators other

than the assignment operator =, the logical operators &&, ||, !, the equality operators
== and !=, the unary & operator, and the conditional operator.

5-0-1 The value of an expression shall be the same under any order of evaluation that the
standard permits.

5-0-2 Limited dependence should be placed on C++ operator precedence rules in
expressions.

5-0-7 There shall be no explicit floating-integral conversions of a cvalue expression.
5-0-8 An explicit integral or floating-point conversion shall not increase the size of the

underlying type of a cvalue expression.
5-0-9 An explicit integral conversion shall not change the signedness of the underlying type

of a cvalue expression.
5-0-10 If the bitwise operators ~ and << are applied to an operand with an underlying type of

unsigned char or unsigned short, the result shall be immediately cast to the underlying
type of the operand.

5-0-13 The condition of an if-statement and the condition of an iteration- statement shall have
type bool

5-0-15 Array indexing shall be the only form of pointer arithmetic.
5-0-18 >, >=, <, <= shall not be applied to objects of pointer type, except where they point to

the same array.
5-0-19 The declaration of objects shall contain no more than two levels of pointer indirection.
5-2-1 Each operand of a logical && or || shall be a postfix - expression.
5-2-2 A pointer to a virtual base class shall only be cast to a pointer to a derived class by

means of dynamic_cast.
5-2-5 A cast shall not remove any const or volatile qualification from the type of a pointer or

reference.
5-2-6 A cast shall not convert a pointer to a function to any other pointer type, including a

pointer to function type.
5-2-7 An object with pointer type shall not be converted to an unrelated pointer type, either

directly or indirectly.
5-2-8 An object with integer type or pointer to void type shall not be converted to an object

with pointer type.
5-2-9 A cast should not convert a pointer type to an integral type.

 Software Quality Objective Subsets (C++)

1-85

MISRA C++ Rule Description
5-2-11 The comma operator, && operator and the || operator shall not be overloaded.
5-3-2 The unary minus operator shall not be applied to an expression whose underlying type

is unsigned.
5-3-3 The unary & operator shall not be overloaded.
5-18-1 The comma operator shall not be used.
6-2-1 Assignment operators shall not be used in sub-expressions.
6-2-2 Floating-point expressions shall not be directly or indirectly tested for equality or

inequality.
6-3-1 The statement forming the body of a switch, while, do ... while or for statement shall be

a compound statement.
6-4-2 All if ... else if constructs shall be terminated with an else clause.
6-4-6 The final clause of a switch statement shall be the default-clause.
6-5-1 A for loop shall contain a single loop-counter which shall not have floating type.
6-5-2 If loop-counter is not modified by -- or ++, then, within condition, the loop-counter shall

only be used as an operand to <=, <, > or >=.
6-5-3 The loop-counter shall not be modified within condition or statement.
6-5-4 The loop-counter shall be modified by one of: --, ++, -=n, or +=n ; where n remains

constant for the duration of the loop.
6-6-1 Any label referenced by a goto statement shall be declared in the same block, or in a

block enclosing the goto statement.
6-6-2 The goto statement shall jump to a label declared later in the same function body.
6-6-4 For any iteration statement there shall be no more than one break or goto statement

used for loop termination.
6-6-5 A function shall have a single point of exit at the end of the function.
7-5-1 A function shall not return a reference or a pointer to an automatic variable (including

parameters), defined within the function.
7-5-2 The address of an object with automatic storage shall not be assigned to another object

that may persist after the first object has ceased to exist.
7-5-4 Functions should not call themselves, either directly or indirectly.
8-4-1 Functions shall not be defined using the ellipsis notation.
8-4-3 All exit paths from a function with non- void return type shall have an explicit return

statement with an expression.
8-4-4 A function identifier shall either be used to call the function or it shall be preceded by

&.
8-5-2 Braces shall be used to indicate and match the structure in the non- zero initialization

of arrays and structures.
8-5-3 In an enumerator list, the = construct shall not be used to explicitly initialize members

other than the first, unless all items are explicitly initialized.
9-5-1 Unions shall not be used.
10-1-2 A base class shall only be declared virtual if it is used in a diamond hierarchy.

1 Interpret Polyspace Code Prover Access Results

1-86

MISRA C++ Rule Description
10-1-3 An accessible base class shall not be both virtual and nonvirtual in the same hierarchy.
10-3-1 There shall be no more than one definition of each virtual function on each path

through the inheritance hierarchy.
10-3-2 Each overriding virtual function shall be declared with the virtual keyword.
10-3-3 A virtual function shall only be overridden by a pure virtual function if it is itself

declared as pure virtual.
11-0-1 Member data in non- POD class types shall be private.
12-1-1 An object's dynamic type shall not be used from the body of its constructor or

destructor.
12-8-2 The copy assignment operator shall be declared protected or private in an abstract

class.
15-0-3 Control shall not be transferred into a try or catch block using a goto or a switch

statement.
15-1-3 An empty throw (throw;) shall only be used in the compound- statement of a catch

handler.
15-3-3 Handlers of a function-try-block implementation of a class constructor or destructor

shall not reference non-static members from this class or its bases.
15-3-5 A class type exception shall always be caught by reference.
15-3-6 Where multiple handlers are provided in a single try-catch statement or function-try-

block for a derived class and some or all of its bases, the handlers shall be ordered
most-derived to base class.

15-3-7 Where multiple handlers are provided in a single try-catch statement or function-try-
block, any ellipsis (catch-all) handler shall occur last.

15-4-1 If a function is declared with an exception-specification, then all declarations of the
same function (in other translation units) shall be declared with the same set of type-
ids.

15-5-1 A class destructor shall not exit with an exception.
15-5-2 Where a function's declaration includes an exception-specification, the function shall

only be capable of throwing exceptions of the indicated type(s).
16-0-5 Arguments to a function-like macro shall not contain tokens that look like

preprocessing directives.
16-0-6 In the definition of a function-like macro, each instance of a parameter shall be

enclosed in parentheses, unless it is used as the operand of # or ##.
16-0-7 Undefined macro identifiers shall not be used in #if or #elif preprocessor directives,

except as operands to the defined operator.
16-2-2 C++ macros shall only be used for: include guards, type qualifiers, or storage class

specifiers.
16-3-1 There shall be at most one occurrence of the # or ## operators in a single macro

definition.
18-4-1 Dynamic heap memory allocation shall not be used.

 Software Quality Objective Subsets (C++)

1-87

See Also

More About
• “Interpret Polyspace Code Prover Access Results” on page 1-2

1 Interpret Polyspace Code Prover Access Results

1-88

Coding Rule Subsets Checked Early in Analysis
In the initial compilation phase of the analysis, Polyspace checks those coding rules that do not
require the run-time error detection part of the analysis. If you want only those rules checked, you
can perform a much quicker analysis.

The software provides two predefined subsets of rules that it checks earlier in the analysis. The
subsets are available with the options Check MISRA C:2004 (-misra2), Check MISRA AC AGC
(-misra-ac-agc), and Check MISRA C:2012 (-misra3). For more information on analysis
options, see the documentation for Polyspace Code Prover or Polyspace Code Prover Server.

Argument Purpose
single-unit-rules Check rules that apply only to single translation units.

If you detect only coding rule violations and select this subset, a Bug Finder
analysis stops after the compilation phase.

system-decidable-
rules

Check rules in the single-unit-rules subset and some rules that apply to
the collective set of program files. The additional rules are the less complex
rules that apply at the integration level. These rules can be checked only at
the integration level because the rules involve more than one translation
unit.

If you detect only coding rule violations and select this subset, a Bug Finder
analysis stops after the linking phase.

See also “Interpret Polyspace Code Prover Access Results” on page 1-2.

MISRA C: 2004 and MISRA AC AGC Rules
The software checks the following rules early in the analysis. The rules that are checked at a system
level and appear only in the system-decidable-rules subset are indicated by an asterisk.

Environment

Rule Description
1.1* All code shall conform to ISO® 9899:1990 "Programming languages - C", amended and

corrected by ISO/IEC 9899/COR1:1995, ISO/IEC 9899/AMD1:1995, and ISO/IEC 9899/
COR2:1996.

Language Extensions

Rule Description
2.1 Assembly language shall be encapsulated and isolated.
2.2 Source code shall only use /* */ style comments.
2.3 The character sequence /* shall not be used within a comment.

Documentation

Rule Description
3.4 All uses of the #pragma directive shall be documented and explained.

 Coding Rule Subsets Checked Early in Analysis

1-89

Character Sets

Rule Description
4.1 Only those escape sequences which are defined in the ISO C standard shall be used.
4.2 Trigraphs shall not be used.

Identifiers

Rule Description
5.1* Identifiers (internal and external) shall not rely on the significance of more than 31

characters.
5.2 Identifiers in an inner scope shall not use the same name as an identifier in an outer

scope, and therefore hide that identifier.
5.3* A typedef name shall be a unique identifier.
5.4* A tag name shall be a unique identifier.
5.5* No object or function identifier with a static storage duration should be reused.
5.6* No identifier in one name space should have the same spelling as an identifier in another

name space, with the exception of structure and union member names.
5.7* No identifier name should be reused.

Types

Rule Description
6.1 The plain char type shall be used only for the storage and use of character values.
6.2 Signed and unsigned char type shall be used only for the storage and use of numeric

values.
6.3 typedefs that indicate size and signedness should be used in place of the basic types.
6.4 Bit fields shall only be defined to be of type unsigned int or signed int.
6.5 Bit fields of type signed int shall be at least 2 bits long.

Constants

Rule Description
7.1 Octal constants (other than zero) and octal escape sequences shall not be used.

1 Interpret Polyspace Code Prover Access Results

1-90

Declarations and Definitions

Rule Description
8.1 Functions shall have prototype declarations and the prototype shall be visible at both the

function definition and call.
8.2 Whenever an object or function is declared or defined, its type shall be explicitly stated.
8.3 For each function parameter the type given in the declaration and definition shall be

identical, and the return types shall also be identical.
8.4* If objects or functions are declared more than once their types shall be compatible.
8.5 There shall be no definitions of objects or functions in a header file.
8.6 Functions shall always be declared at file scope.
8.7 Objects shall be defined at block scope if they are only accessed from within a single

function.
8.8* An external object or function shall be declared in one file and only one file.
8.9* An identifier with external linkage shall have exactly one external definition.
8.10* All declarations and definitions of objects or functions at file scope shall have internal

linkage unless external linkage is required.
8.11 The static storage class specifier shall be used in definitions and declarations of

objects and functions that have internal linkage
8.12 When an array is declared with external linkage, its size shall be stated explicitly or

defined implicitly by initialization.

Initialization

Rule Description
9.2 Braces shall be used to indicate and match the structure in the nonzero initialization of

arrays and structures.
9.3 In an enumerator list, the = construct shall not be used to explicitly initialize members

other than the first, unless all items are explicitly initialized.

 Coding Rule Subsets Checked Early in Analysis

1-91

Arithmetic Type Conversion

Rule Description
10.1 The value of an expression of integer type shall not be implicitly converted to a different

underlying type if:

• It is not a conversion to a wider integer type of the same signedness, or
• The expression is complex, or
• The expression is not constant and is a function argument, or
• The expression is not constant and is a return expression

10.2 The value of an expression of floating type shall not be implicitly converted to a different
type if

• It is not a conversion to a wider floating type, or
• The expression is complex, or
• The expression is a function argument, or
• The expression is a return expression

10.3 The value of a complex expression of integer type may only be cast to a type that is
narrower and of the same signedness as the underlying type of the expression.

10.4 The value of a complex expression of float type may only be cast to narrower floating
type.

10.5 If the bitwise operator ~ and << are applied to an operand of underlying type unsigned
char or unsigned short, the result shall be immediately cast to the underlying type of
the operand

10.6 The "U" suffix shall be applied to all constants of unsigned types.

Pointer Type Conversion

Rule Description
11.1 Conversion shall not be performed between a pointer to a function and any type other

than an integral type.
11.2 Conversion shall not be performed between a pointer to an object and any type other

than an integral type, another pointer to a object type or a pointer to void.
11.3 A cast should not be performed between a pointer type and an integral type.
11.4 A cast should not be performed between a pointer to object type and a different pointer

to object type.
11.5 A cast shall not be performed that removes any const or volatile qualification from

the type addressed by a pointer

1 Interpret Polyspace Code Prover Access Results

1-92

Expressions

Rule Description
12.1 Limited dependence should be placed on C's operator precedence rules in expressions.
12.3 The sizeof operator should not be used on expressions that contain side effects.
12.5 The operands of a logical && or || shall be primary-expressions.
12.6 Operands of logical operators (&&, || and !) should be effectively Boolean. Expression

that are effectively Boolean should not be used as operands to operators other than (&&,
|| or !).

12.7 Bitwise operators shall not be applied to operands whose underlying type is signed.
12.9 The unary minus operator shall not be applied to an expression whose underlying type is

unsigned.
12.10 The comma operator shall not be used.
12.11 Evaluation of constant unsigned expression should not lead to wraparound.
12.12 The underlying bit representations of floating-point values shall not be used.
12.13 The increment (++) and decrement (--) operators should not be mixed with other

operators in an expression

Control Statement Expressions

Rule Description
13.1 Assignment operators shall not be used in expressions that yield Boolean values.
13.2 Tests of a value against zero should be made explicit, unless the operand is effectively

Boolean.
13.3 Floating-point expressions shall not be tested for equality or inequality.
13.4 The controlling expression of a for statement shall not contain any objects of floating

type.
13.5 The three expressions of a for statement shall be concerned only with loop control.
13.6 Numeric variables being used within a for loop for iteration counting should not be

modified in the body of the loop.

 Coding Rule Subsets Checked Early in Analysis

1-93

Control Flow

Rule Description
14.3 All non-null statements shall either

• have at least one side effect however executed, or
• cause control flow to change.

14.4 The goto statement shall not be used.
14.5 The continue statement shall not be used.
14.6 For any iteration statement, there shall be at most one break statement used for loop

termination.
14.7 A function shall have a single point of exit at the end of the function.
14.8 The statement forming the body of a switch, while, do while or for statement shall

be a compound statement.
14.9 An if (expression) construct shall be followed by a compound statement. The else

keyword shall be followed by either a compound statement, or another if statement.
14.10 All if else if constructs should contain a final else clause.

Switch Statements

Rule Description
15.0 Unreachable code is detected between switch statement and first case.
15.1 A switch label shall only be used when the most closely-enclosing compound statement

is the body of a switch statement
15.2 An unconditional break statement shall terminate every non-empty switch clause.
15.3 The final clause of a switch statement shall be the default clause.
15.4 A switch expression should not represent a value that is effectively Boolean.
15.5 Every switch statement shall have at least one case clause.

Functions

Rule Description
16.1 Functions shall not be defined with variable numbers of arguments.
16.3 Identifiers shall be given for all of the parameters in a function prototype declaration.
16.4* The identifiers used in the declaration and definition of a function shall be identical.
16.5 Functions with no parameters shall be declared with parameter type void.
16.6 The number of arguments passed to a function shall match the number of parameters.
16.8 All exit paths from a function with non-void return type shall have an explicit return

statement with an expression.
16.9 A function identifier shall only be used with either a preceding &, or with a parenthesized

parameter list, which may be empty.

1 Interpret Polyspace Code Prover Access Results

1-94

Pointers and Arrays

Rule Description
17.4 Array indexing shall be the only allowed form of pointer arithmetic.
17.5 A type should not contain more than 2 levels of pointer indirection.

Structures and Unions

Rule Description
18.1 All structure or union types shall be complete at the end of a translation unit.
18.4 Unions shall not be used.

Preprocessing Directives

Rule Description
19.1 #include statements in a file shall only be preceded by other preprocessors directives

or comments.
19.2 Nonstandard characters should not occur in header file names in #include directives.
19.3 The #include directive shall be followed by either a <filename> or "filename" sequence.
19.4 C macros shall only expand to a braced initializer, a constant, a parenthesized expression,

a type qualifier, a storage class specifier, or a do-while-zero construct.
19.5 Macros shall not be #defined and #undefd within a block.
19.6 #undef shall not be used.
19.7 A function should be used in preference to a function like-macro.
19.8 A function-like macro shall not be invoked without all of its arguments.
19.9 Arguments to a function-like macro shall not contain tokens that look like preprocessing

directives.
19.10 In the definition of a function-like macro, each instance of a parameter shall be enclosed

in parentheses unless it is used as the operand of # or ##.
19.11 All macro identifiers in preprocessor directives shall be defined before use, except in

#ifdef and #ifndef preprocessor directives and the defined() operator.
19.12 There shall be at most one occurrence of the # or ## preprocessor operators in a single

macro definition.
19.13 The # and ## preprocessor operators should not be used.
19.14 The defined preprocessor operator shall only be used in one of the two standard forms.
19.15 Precautions shall be taken in order to prevent the contents of a header file being included

twice.
19.16 Preprocessing directives shall be syntactically meaningful even when excluded by the

preprocessor.
19.17 All #else, #elif and #endif preprocessor directives shall reside in the same file as the

#if or #ifdef directive to which they are related.

 Coding Rule Subsets Checked Early in Analysis

1-95

Standard Libraries

Rule Description
20.1 Reserved identifiers, macros and functions in the standard library, shall not be defined,

redefined or undefined.
20.2 The names of standard library macros, objects and functions shall not be reused.
20.4 Dynamic heap memory allocation shall not be used.
20.5 The error indicator errno shall not be used.
20.6 The macro offsetof, in library <stddef.h>, shall not be used.
20.7 The setjmp macro and the longjmp function shall not be used.
20.8 The signal handling facilities of <signal.h> shall not be used.
20.9 The input/output library <stdio.h> shall not be used in production code.
20.10 The library functions atof, atoi and atoll from library <stdlib.h> shall not be used.
20.11 The library functions abort, exit, getenv and system from library <stdlib.h> shall

not be used.
20.12 The time handling functions of library <time.h> shall not be used.

The rules that are checked at a system level and appear only in the system-decidable-rules
subset are indicated by an asterisk.

MISRA C: 2012 Rules
The software checks the following rules early in the analysis. The rules that are checked at a system
level and appear only in the system-decidable-rules subset are indicated by an asterisk.

Standard C Environment

Rule Description
1.1 The program shall contain no violations of the standard C syntax and constraints, and

shall not exceed the implementation's translation limits.
1.2 Language extensions should not be used.

Unused Code

Rule Description
2.3* A project should not contain unused type declarations.
2.4* A project should not contain unused tag declarations.
2.5* A project should not contain unused macro declarations.
2.6 A function should not contain unused label declarations.
2.7 There should be no unused parameters in functions.

1 Interpret Polyspace Code Prover Access Results

1-96

Comments

Rule Description
3.1 The character sequences /* and // shall not be used within a comment.
3.2 Line-splicing shall not be used in // comments.

Character Sets and Lexical Conventions

Rule Description
4.1 Octal and hexadecimal escape sequences shall be terminated.
4.2 Trigraphs should not be used.

Identifiers

Rule Description
5.1* External identifiers shall be distinct.
5.2 Identifiers declared in the same scope and name space shall be distinct.
5.3 An identifier declared in an inner scope shall not hide an identifier declared in an outer

scope.
5.4 Macro identifiers shall be distinct.
5.5 Identifiers shall be distinct from macro names.
5.6* A typedef name shall be a unique identifier.
5.7* A tag name shall be a unique identifier.
5.8* Identifiers that define objects or functions with external linkage shall be unique.
5.9* Identifiers that define objects or functions with internal linkage should be unique.

Types

Rule Description
6.1 Bit-fields shall only be declared with an appropriate type.
6.2 Single-bit named bit fields shall not be of a signed type.

Literals and Constants

Rule Description
7.1 Octal constants shall not be used.
7.2 A "u" or "U" suffix shall be applied to all integer constants that are represented in an

unsigned type.
7.3 The lowercase character "l" shall not be used in a literal suffix.
7.4 A string literal shall not be assigned to an object unless the object's type is "pointer to

const-qualified char".

 Coding Rule Subsets Checked Early in Analysis

1-97

Declarations and Definitions

Rule Description
8.1 Types shall be explicitly specified.
8.2 Function types shall be in prototype form with named parameters.
8.3* All declarations of an object or function shall use the same names and type qualifiers.
8.4 A compatible declaration shall be visible when an object or function with external linkage

is defined.
8.5* An external object or function shall be declared once in one and only one file.
8.6* An identifier with external linkage shall have exactly one external definition.
8.7* Functions and objects should not be defined with external linkage if they are referenced

in only one translation unit.
8.8 The static storage class specifier shall be used in all declarations of objects and

functions that have internal linkage.
8.9* An object should be defined at block scope if its identifier only appears in a single

function.
8.10 An inline function shall be declared with the static storage class.
8.11 When an array with external linkage is declared, its size should be explicitly specified.
8.12 Within an enumerator list, the value of an implicitly-specified enumeration constant shall

be unique.
8.14 The restrict type qualifier shall not be used.

Initialization

Rule Description
9.2 The initializer for an aggregate or union shall be enclosed in braces.
9.3 Arrays shall not be partially initialized.
9.4 An element of an object shall not be initialized more than once.
9.5 Where designated initializers are used to initialize an array object the size of the array

shall be specified explicitly.

1 Interpret Polyspace Code Prover Access Results

1-98

The Essential Type Model

Rule Description
10.1 Operands shall not be of an inappropriate essential type.
10.2 Expressions of essentially character type shall not be used inappropriately in addition

and subtraction operations.
10.3 The value of an expression shall not be assigned to an object with a narrower essential

type or of a different essential type category.
10.4 Both operands of an operator in which the usual arithmetic conversions are performed

shall have the same essential type category.
10.5 The value of an expression should not be cast to an inappropriate essential type.
10.6 The value of a composite expression shall not be assigned to an object with wider

essential type.
10.7 If a composite expression is used as one operand of an operator in which the usual

arithmetic conversions are performed then the other operand shall not have wider
essential type.

10.8 The value of a composite expression shall not be cast to a different essential type
category or a wider essential type.

Pointer Type Conversion

Rule Description
11.1 Conversions shall not be performed between a pointer to a function and any other type.
11.2 Conversions shall not be performed between a pointer to an incomplete type and any

other type.
11.3 A cast shall not be performed between a pointer to object type and a pointer to a

different object type.
11.4 A conversion should not be performed between a pointer to object and an integer type.
11.5 A conversion should not be performed from pointer to void into pointer to object.
11.6 A cast shall not be performed between pointer to void and an arithmetic type.
11.7 A cast shall not be performed between pointer to object and a non-integer arithmetic

type.
11.8 A cast shall not remove any const or volatile qualification from the type pointed to by a

pointer.
11.9 The macro NULL shall be the only permitted form of integer null pointer constant.

Expressions

Rule Description
12.1 The precedence of operators within expressions should be made explicit.
12.3 The comma operator should not be used.
12.4 Evaluation of constant expressions should not lead to unsigned integer wrap-around.

 Coding Rule Subsets Checked Early in Analysis

1-99

Side Effects

Rule Description
13.3 A full expression containing an increment (++) or decrement (--) operator should have

no other potential side effects other than that caused by the increment or decrement
operator.

13.4 The result of an assignment operator should not be used.
13.6 The operand of the sizeof operator shall not contain any expression which has potential

side effects.

Control Statement Expressions

Rule Description
14.4 The controlling expression of an if statement and the controlling expression of an

iteration-statement shall have essentially Boolean type.

Control Flow

Rule Description
15.1 The goto statement should not be used.
15.2 The goto statement shall jump to a label declared later in the same function.
15.3 Any label referenced by a goto statement shall be declared in the same block, or in any

block enclosing the goto statement.
15.4 There should be no more than one break or goto statement used to terminate any

iteration statement.
15.5 A function should have a single point of exit at the end
15.6 The body of an iteration-statement or a selection-statement shall be a compound

statement.
15.7 All if … else if constructs shall be terminated with an else statement.

Switch Statements

Rule Description
16.1 All switch statements shall be well-formed.
16.2 A switch label shall only be used when the most closely-enclosing compound statement

is the body of a switch statement.
16.3 An unconditional break statement shall terminate every switch-clause.
16.4 Every switch statement shall have a default label.
16.5 A default label shall appear as either the first or the last switch label of a switch

statement.
16.6 Every switch statement shall have at least two switch-clauses.
16.7 A switch-expression shall not have essentially Boolean type.

1 Interpret Polyspace Code Prover Access Results

1-100

Functions

Rule Description
17.1 The features of <starg.h> shall not be used.
17.3 A function shall not be declared implicitly.
17.4 All exit paths from a function with non-void return type shall have an explicit return

statement with an expression.
17.6 The declaration of an array parameter shall not contain the static keyword between the

[].
17.7 The value returned by a function having non-void return type shall be used.

Pointers and Arrays

Rule Description
18.4 The +, -, += and -= operators should not be applied to an expression of pointer type.
18.5 Declarations should contain no more than two levels of pointer nesting.
18.7 Flexible array members shall not be declared.
18.8 Variable-length array types shall not be used.

Overlapping Storage

Rule Description
19.2 The union keyword should not be used.

 Coding Rule Subsets Checked Early in Analysis

1-101

Preprocessing Directives

Rule Description
20.1 #include directives should only be preceded by preprocessor directives or comments.
20.2 The ', ", or \ characters and the /* or // character sequences shall not occur in a

header file name.
20.3 The #include directive shall be followed by either a <filename> or \"filename\"

sequence.
20.4 A macro shall not be defined with the same name as a keyword.
20.5 #undef should not be used.
20.6 Tokens that look like a preprocessing directive shall not occur within a macro argument.
20.7 Expressions resulting from the expansion of macro parameters shall be enclosed in

parentheses.
20.8 The controlling expression of a #if or #elif preprocessing directive shall evaluate to 0

or 1.
20.9 All identifiers used in the controlling expression of #if or #elif preprocessing

directives shall be #define'd before evaluation.
20.10 The # and ## preprocessor operators should not be used.
20.11 A macro parameter immediately following a # operator shall not immediately be followed

by a ## operator.
20.12 A macro parameter used as an operand to the # or ## operators, which is itself subject to

further macro replacement, shall only be used as an operand to these operators.
20.13 A line whose first token is # shall be a valid preprocessing directive.
20.14 All #else, #elif and #endif preprocessor directives shall reside in the same file as the

#if, #ifdef or #ifndef directive to which they are related.

Standard Libraries

Rule Description
21.1 #define and #undef shall not be used on a reserved identifier or reserved macro name.
21.2 A reserved identifier or macro name shall not be declared.
21.3 The memory allocation and deallocation functions of <stdlib.h> shall not be used.
21.4 The standard header file <setjmp.h> shall not be used.
21.5 The standard header file <signal.h> shall not be used.
21.6 The Standard Library input/output functions shall not be used.
21.7 The atof, atoi, atol, and atoll functions of <stdlib.h> shall not be used.
21.8 The library functions abort, exit, getenv and system of <stdlib.h> shall not be

used.
21.9 The library functions bsearch and qsort of <stdlib.h> shall not be used.
21.10 The Standard Library time and date functions shall not be used.
21.11 The standard header file <tgmath.h> shall not be used.
21.12 The exception handling features of <fenv.h> should not be used.

1 Interpret Polyspace Code Prover Access Results

1-102

The rules that are checked at a system level and appear only in the system-decidable-rules
subset are indicated by an asterisk.

See Also

More About
• “Interpret Polyspace Code Prover Access Results” on page 1-2

 Coding Rule Subsets Checked Early in Analysis

1-103

HIS Code Complexity Metrics
The following list shows the Hersteller Initiative Software (HIS) standard metrics that Polyspace
evaluates. These metrics and the recommended limits for their values are part of a standard defined
by a major group of Original Equipment Manufacturers or OEMs.

Project
Polyspace evaluates the following HIS metrics at the project level.

Metric Recommended Upper Limit
Number of direct recursions 0
Number of recursions 0

File
Polyspace evaluates the HIS metric, comment density, at the file level. The recommended lower limit
is 20.

Function
Polyspace evaluates the following HIS metrics at the function level.

Metric Recommended Upper Limit
Cyclomatic complexity 10
Language scope 4
Number of call levels 4
Number of calling functions 5
Number of called functions 7
Number of function parameters 5
Number of goto statements 0
Number of instructions 50
Number of paths 80
Number of return statements 1

See Also

More About
• “Code Metrics”

1 Interpret Polyspace Code Prover Access Results

1-104

Fix or Comment Polyspace Results

• “Address Polyspace Results Through Bug Fixes or Justifications” on page 2-2
• “Annotate Code and Hide Known or Acceptable Results” on page 2-4
• “Short Names of Code Prover Run-Time Checks” on page 2-9
• “Short Names of Code Complexity Metrics” on page 2-11
• “Define Custom Annotation Format” on page 2-13
• “Annotation Description Full XML Template” on page 2-20
• “Justify Coding Rule Violations Using Code Prover Checks” on page 2-26

2

Address Polyspace Results Through Bug Fixes or Justifications
Once you understand the root cause of a Polyspace finding, you can fix your code. Otherwise, add
review information to your Polyspace results to fix the code later or to justify the result. You can use
the information to keep track of your review progress.

If you add review information to your results file, they carry over to the results of the next analysis on
the same project. If you add the same information as comments to your code (annotate), they carry
over to any subsequent analysis of the code, whether in the same project or not.

Add Review Information in Result Details pane

2 Fix or Comment Polyspace Results

2-2

Set the Status and Severity, and optionally enter notes with more explanations in the Result
Details pane. The status indicates your response to the Polyspace result. If you do not plan to fix your
code in response to a result, assign one of the following statuses:

• Justified
• No Action Planned
• Not a Defect

Based on the status, Polyspace considers that you have given due consideration and justified that
result (retained the code despite the result).

Comment or Annotate in Code
If you enter code comments or annotations in a specific syntax, the software can read them and
populate the Severity, Status, and comment fields in the next analysis of the code. Open your source
code in an editor and enter the annotation on the same line as the result.

For the annotation syntax, see “Annotate Code and Hide Known or Acceptable Results” on page 2-
4.

If you do not specify a status in your annotation, Polyspace assumes that you have set a status of No
Action Planned.

See Also

More About
• “Annotate Code and Hide Known or Acceptable Results” on page 2-4

 Address Polyspace Results Through Bug Fixes or Justifications

2-3

Annotate Code and Hide Known or Acceptable Results
To facilitate your review workflow, Polyspace Access classifies analysis findings as

• To Do, with a status of Unreviewed.
• In Progress, with a status of To fix, To investigate, or Other.
• Done, with a status of Justified, No action planned, or Not a defect.

In the DASHBOARD perspective, open issues are findings that are To Do or In Progress.

If a Polyspace analysis of your code finds known or acceptable defects or coding rule violations, you
can remove the defects or violations from the list of Open Issues in subsequent analyses. Add code
annotations that specifies a status of Justified, No action planned, or Not a defect,
indicating that you have reviewed the issues and that you do not intend to fix them.

Add annotations by typing them directly in your code. For the general workflow, see “Address
Polyspace Results Through Bug Fixes or Justifications” on page 2-2. This topic shows the annotation
syntax. If you annotate a finding in your code, you cannot edit the status, severity, or comment fields
in the Polyspace Access interface.

Code Annotation Syntax
To add comments directly to your source file, use the Polyspace annotation syntax. The syntax is not
case sensitive, and has the following format. Both C style comments within /* */ and C++ style
comments starting with // are supported.

• Annotation for current line of code (including within macros):

line of code; /* polyspace Family:Result_name */
• Annotation for current line of code and n following lines:

code; /* polyspace +n Family:Result_name */
• Annotation for block of code:

/* polyspace-begin Family:Result_name */
code;
/* polyspace-end Family:Result_name */

Annotations begin with the keyword polyspace and must include Family and Result_name field
values. You can optionally specify Status, Severity, and Comment field values.

polyspace Family:Result_name [Status:Severity] "Comment"

When you annotate a block of code, if subsequent annotations nested within that block of code apply
to the same Family and Result_name, the nested annotation is applied.

For example, in this code, the annotation on line 9 is applied instead of the block annotation, but the
block annotation is applied to the violation on line 7.

2 Fix or Comment Polyspace Results

2-4

1 /*polyspace-begin MISRA-C:14.9 [To fix:High] "Block annotation"*/
2 int main(void) /*polyspace MISRA-C:14.7 "Nested annotation applied"*/
3 {
4 int x = 1;
5 int y = x / 2;
6
7 if (y < 0) /* Block annotation is applied to this violation of MISRA-C:14.9*/
8 y++;
9 if (x > y) /*polyspace MISRA-C:14.9 [Justified:Low] "Nested annotation applied"*/
10 return x;
11 return x;
12 }
13 /*polyspace-end MISRA-C:14.9 [To fix:High] "Block annotation"*/

If you apply an annotation to multiple lines of code, the annotation does not apply to green checks in
the code. When you rerun the analysis these green checks are not considered justified, and their
Status and Severity in the Results List do not change to the Status and Severity of the
annotation.

If you do not specify a status, Polyspace Access considers the result Done, and assigns the status No
action planned to the result.

To replace the different annotation fields with their allowed values, use the values in this table or see
the examples on page 2-7.

Field Allowed Value
Family Type of analysis result:

• DEFECT (Polyspace Bug Finder)
• RTE, for run-time checks (Polyspace Code Prover)
• CODE-METRICS, for function-level code complexity metrics
• VARIABLE, for global variables (Polyspace Code Prover)
• MISRA-C or MISRA2004 for MISRA C: 2004 rule violations
• MISRA-AC-AGC for violations of MISRA C:2004 rules applicable to

generated code
• MISRA-C3 or MISRA2012 for MISRA C: 2012 rule violations. The

annotation works even for the rules applicable to generated code.
• CERT-C for CERT® C coding standard violations
• CERT-CPP for CERT C++ coding standard violations
• ISO-17961 for ISO/IEC TS 17961 coding standard violations
• MISRA-CPP for MISRA C++ rule violations
• AUTOSAR-CPP14 for AUTOSAR C++14 rule violations
• JSF for JSF++ rule violations
• CUSTOM for violations of custom coding rules

To specify all analysis results, use the asterisk character *:*.

 Annotate Code and Hide Known or Acceptable Results

2-5

Field Allowed Value
Result_name For DEFECT, use short names of checkers. See “Short Names of Bug

Finder Defect Checkers” (Polyspace Bug Finder Access).

For RTE, use short names of run-time checks. See “Short Names of Code
Prover Run-Time Checks” on page 2-9.

For CODE-METRICS, use short names of code complexity metrics. See
“Short Names of Code Complexity Metrics” on page 2-11.

For VARIABLE, the only allowed value is the asterisk character " * ".

For coding standard violations, specify the rule number or numbers.

To specify all parts of a result name [MISRA2012:17.*] or all result
names in a family [DEFECT:*], use the asterisk character.

Status Text to indicate how you intend to address the error in your code. This
value populates the Status column in the Results List pane as:

• Unreviewed
• To investigate
• To fix
• Justified
• No action planned
• Not a defect
• Other

Polyspace Access removes results annotated with status Justified, No
action planned, or Not a defect from the list of Open Issues in
subsequent analyses.

Severity Text to indicate how critical you consider the error in your code. This
value populates the Severity column in the Results List pane as:

• Unset
• High
• Medium
• Low

Comment Additional text, such as a keyword or an explanation for the status and
severity. This value populates the Comment column in the Results List
pane.

The additional text can span more than one line in the code. When
showing this text in reports, leading and trailing spaces on a line are
merged into one space so that the entire text can be read as a single
paragraph.

2 Fix or Comment Polyspace Results

2-6

Syntax Examples
Annotate a Single Defect

Enter an annotation on the same line as the defect and specify the Family (DEFECT) and the
Result_name (INT_OVFL). When you do not specify a status, Polyspace assigns the status No
action planned and the result is considered Done in subsequent analyses.

int var = INT_MAX;
var++;/* polyspace DEFECT:INT_OVFL */

Annotate a Single Coding Standard Violation

Justify a coding standard violation, for instance, a CERT-C violation.

Enter an annotation on the same line as the violation and specify the Family (CERT-C) and the
Result_name (the rule number, for instance, STR31-C). Assign the status Justified, severity Low
and a comment.

code; /* polyspace CERT-C:STR31-C [Justified:Low] "Overflow cannot happen
 because of external constraints." */

Annotate All MISRA C: 2012 Violations Over Multiple Lines

Enter an annotation with +n between polyspace and the Family:Result_name entries. The
annotation applies to the same line and the n following lines.

This annotation applies to lines 4–7. The line count includes code, comments, and blank lines.

4. code ; // polyspace +3 MISRA2012:*
5. //comment
6.
7. code;
8. code;

Annotate All Code Metrics on Function

To annotate function-level code complexity metrics, in the function definition, enter an annotation on
the same line as the function name.

This annotation suppresses all code complexity metrics for function func:

char func(char param) { //polyspace CODE-METRICS:*
 ...
}

Specify Multiple Families in the Same Annotation

Enter each family separated by a space. This annotation applies to all MISRA C:2012 rules 17 and to
all run-time checks.

some code; /* polyspace MISRA2012:17.* RTE:* */

Specify Multiple Result Names in the Same Annotation

After you specify the Family (DEFECT), enter each Result_name separated by a comma.

 Annotate Code and Hide Known or Acceptable Results

2-7

system("rm ~/.config"); /* polyspace DEFECT:UNSAFE_SYSTEM_CALL,RETURN_NOT_CHECKED */

Add Explanatory Comments to Annotation

After you specify a Family and a Result_name, you can add a Comment with additional information
for your justification. You can provide a comment for all families and result names, or a comment for
each family or result name.

//Single comment

code; /* polyspace DEFECT:BAD_FREE MISRA2004:* "OK Defect and MISRA" */
//Multiple comments incorrect syntax:

code; /* polyspace DEFECT:* "OK defect" MISRA2004:5.2 "OK MISRA" */

//Multiple comments correct syntax:
code; /* polyspace DEFECT:* "OK defect" polyspace MISRA2004:5.2 "OK MISRA" */

In annotations, Polyspace ignores all text following double quotes. To specify additional
Family:Result_name, [Status:Severity] or Comment entries, you must reenter the keyword
polyspace after text in double quotes.

Set Status and Severity

You can specify allowed values on page 2-4 or enter custom values for status and severity.

//Set Status only
code; /* polyspace DEFECT:* [To fix] "some comment" */

//Set Status 'To fix' and Severity 'High'
code; /* polyspace VARIABLE:* [To fix: High] "some comment"*/

//Set custom status 'Assigned' and Severity 'Medium'
code; /* polyspace MISRA2012:12.* [Assigned: Medium] */

See Also

More About
• “Define Custom Annotation Format” on page 2-13
• “Short Names of Code Prover Run-Time Checks” on page 2-9
• “Short Names of Code Complexity Metrics” on page 2-11

2 Fix or Comment Polyspace Results

2-8

Short Names of Code Prover Run-Time Checks
When annotating your code to justify checks or creating custom software quality objectives, you use
short names of Code Prover run-time checks instead of the full names. The following table lists the
short names for individual run-time checks.

Check Acronym
Absolute address ABS_ADDR
AUTOSAR runnable not implemented AUTOSAR_NOIMPL
Correctness condition COR
Division by zero ZDV
Function not called FNC
Function not reachable FNR
Function returns a value FRV
Illegally dereferenced pointer IDP
Incorrect object oriented programming OOP
Invalid C++ specific operations CPP
Invalid floating point operation INVALID_FLOAT_OP
Invalid result of AUTOSAR runnable
implementation

AUTOSAR_IMPL

Invalid shift operations SHF
Invalid use of AUTOSAR runtime
environment function

AUTOSAR_USE

Invalid use of standard library routine STD_LIB
Non-initialized local variable NIVL
Non-initialized pointer NIP
Non-initialized variable NIV
Non-terminating call NTC
Non-terminating loop NTL
Null this-pointer calling method NNT
Out of bounds array index OBAI
Overflow OVFL
Return value not initialized IRV
Subnormal float SUBNORMAL
Uncaught exception EXC
Unreachable Code UNR
User assertion ASRT

 Short Names of Code Prover Run-Time Checks

2-9

See Also

More About
• “Annotate Code and Hide Known or Acceptable Results” on page 2-4

2 Fix or Comment Polyspace Results

2-10

Short Names of Code Complexity Metrics
When annotating your code to justify metrics or creating custom software quality objectives, you use
short names of code complexity metrics instead of the full names. The following table lists the short
names for code complexity metrics.

Note that you can only annotate your code for function level code complexity metrics only.

Project Metrics
Code Metric Acronym
Number of Direct Recursions AP_CG_DIRECT_CYCLE
Number of Header Files INCLUDES
Number of Files FILES
Number of Protected Shared Variables
(Code Prover only)

PSHV

Number of Recursions AP_CG_CYCLE
Number of Potentially Unprotected
Shared Variables (Code Prover only)

UNPSHV

Program Maximum Stack Usage (Code Prover
only)

PROG_MAX_STACK

Program Minimum Stack Usage (Code Prover
only)

PROG_MIN_STACK

File Metrics
Code Metric Acronym
Comment Density COMF
Estimated Function Coupling FCO
Number of Lines TOTAL_LINES
Number of Lines Without Comment LINES_WITHOUT_CMT

Function Metrics
Code Metric Acronym
Cyclomatic Complexity VG
Higher Estimate of Local Variable Size LOCAL_VARS_MAX
Language Scope VOCF
Lower Estimate of Local Variable Size LOCAL_VARS_MIN
Minimum Stack Usage (Code Prover only) MIN_STACK
Maximum Stack Usage (Code Prover only) MAX_STACK
Number of Call Levels LEVEL

 Short Names of Code Complexity Metrics

2-11

Code Metric Acronym
Number of Call Occurrences NCALLS
Number of Called Functions CALLS
Number of Calling Functions CALLING
Number of Executable Lines FXLN
Number of Function Parameters PARAM
Number of Goto Statements GOTO
Number of Instructions STMT
Number of Lines Within Body FLIN
Number of Local Non-Static Variables LOCAL_VARS
Number of Local Static Variables LOCAL_STATIC_VARS
Number of Paths PATH
Number of Return Statements RETURN

See Also

More About
• “Annotate Code and Hide Known or Acceptable Results” on page 2-4

2 Fix or Comment Polyspace Results

2-12

Define Custom Annotation Format
This example shows how to create and edit an XML file to define an annotation format and map it to
the Polyspace annotation syntax.

To get started, copy the following code to a text editor and save it on your machine as
annotations_description.xml.

 Define Custom Annotation Format

2-13

<?xml version="1.0" encoding="UTF-8"?>

<Annotations xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:noNamespaceSchemaLocation="annotations_xml_schema.xsd"
 Group="example XML">

 <Expressions Search_For_Keywords="myKeyword"
 Separator_Result_Name="," >
 <!-- Define annotation format in this
 section by adding <Expression/> elements -->

 <Expression Mode="SAME_LINE"
 Regex="myKeyword\s+(\w+(\s*,\s*\w+)*)"
 Rule_Identifier_Position="1"
 />

 <Expression Mode="GOTO_INCREMENT"
 Regex="myKeyword\s+(\+\d+\s)(\w+(\s*,\s*\w+)*)"
 Increment_Position="1"
 Rule_Identifier_Position="2"
 />

 <Expression Mode="BEGIN"
 Regex="myKeyword\s*(\w+(\s*,\s*\w+)*)\s*Block_on"
 Rule_Identifier_Position="1"
 Case_Insensitive="true"
 />

 <Expression Mode="END"
 Regex="myKeyword\s*(\w+(\s*,\s*\w+)*)\s*Block_off"
 Rule_Identifier_Position="1"
 />
 <Expression Mode="END_ALL"
 Regex="myKeyword\sBlock_off_all"
 />

 <Expression Mode="SAME_LINE"

Regex="myKeywords\s+(\w+(\s*,\s*\w+)*)
(\s*\[(\w+\s*)*([:]\s*(\w+\s*)+)*\])*(\s*-*\s*)*([^-]*)(\s*-*)*"
Rule_Identifier_Position="1"
Status_Position="4"
Severity_Position="6"
Comment_Position="8"
 />
<! -- Put the regular expression on a single line instead of two line
when you copy it to a text editor -->

 <!-- SAME_LINE example with more complex regular expression.
 Matches the following annotations:
 //myKeywords 50 [my_status:my_severity] -Additional comment-
 //myKeywords 50 [my_status]
 //myKeywords 50 [:my_severity]
 //myKeywords 50 -Additional comment-
 -->

 </Expressions>

 <Mapping>
 <!-- Map your annotation syntax to the Polyspace annotation
 syntax by adding <Result_Name_Mapping /> elements in this section -->

<Result_Name_Mapping Rule_Identifier="100" Family="RTE" Result_Name="ZDV"/>
<Result_Name_Mapping Rule_Identifier="50" Family="MISRA-C3" Result_Name="8.4"/>
<Result_Name_Mapping Rule_Identifier="51" Family="MISRA-C3" Result_Name="8.7"/>
<Result_Name_Mapping Rule_Identifier="ALL_MISRA" Family="MISRA-C3" Result_Name="*"/>
 </Mapping>
</Annotations>

The XML file consists of two parts:

• <Expressions>...</Expressions> where you define the format of your annotation syntax.
• <Mapping>...</Mapping> where you map your syntax to the Polyspace annotation syntax.

2 Fix or Comment Polyspace Results

2-14

After you edit this file, Polyspace can interpret your custom code annotation when you invoke the
option -xml-annotations-description. For more on analysis options, see the documentation for
Polyspace Bug Finder or Polyspace Bug Finder Server .

Define Annotation Syntax Format
To define an annotation syntax in Polyspace, your syntax must follow a pattern that you can represent
with a regular expression. See “Regular Expressions” (MATLAB). It is recommended that you include
a keyword in the pattern of your annotation syntax to help identify it. In this example, the keyword is
myKeyword. Set the attribute Search_For_Keywords equal to this keyword.

Once you know the pattern of your annotation, you can define it in the XML by adding an
<Expression/> element and specifying at least the attributes Mode, Regex, and
Rule_Identifier_Position. For instance, the first <Expression/> element in
annotations_description.xml defines an annotation with these attributes:

• Mode="SAME_LINE". The annotation applies to code on the same line.
• Regex="myKeyword\s+(\w+(\s*,\s*\w+)*)". Polyspace uses the regular expression to

search for a string that begins with myKeyword, followed by a space \s+. Polyspace then searches
for a capturing group (\w+(\s*,\s*\w+)*) that includes an alphanumeric rule identifier \w+
and, optionally, additional comma-separated rule identifiers (\s*,\s*\w+)*.

• Rule_Identifier_Position="1". The integer value of this attribute corresponds to the
number of opening parentheses preceding the relevant capturing group in the regular expression.
In myKeyword\s+(\w+(\s*,\s*\w+)*), one opening parenthesis precedes the capturing group
of the rule identifier (\w+(\s*,\s*\w+)*). If you want to match rule identifiers captured by
(\s*,\s*\w+), then you set Rule_Identifier_Position="2" because two opening
parentheses precede this capturing group.

The list of attributes and their values are listed in this table. The example column refers to the format
defined in annotations_description.xml.

Attribute Use Value Example
Mode Required SAME_LINE Applies only on the same line as the

annotation.

code; //myKeyword 100

GOTO_INCREME
NT

Applies on the same line as the annotation
and the following n lines:

3. code; // myKeyword +3 ALL_MISRA
4. /*comments */
5.
6. code;
7. code;

The preceding annotation applies to lines
3–6 only.

 Define Custom Annotation Format

2-15

Attribute Use Value Example
BEGIN Applies to the same line and all following

lines until a corresponding expression
with attribute Mode="END" or
"END_ALL", or until the end of the file.

 //myKeyword 50, 51 Block_on
 Code block 1;
 ...

END Stops the application of a rule identifier
declared by a corresponding expression
with attribute Mode="BEGIN".

 //myKeyword 50, 51 Block_on
 Code block 1;
 ...
 More code;
 //myKeyword 50 Block_off

Only rule identifier 50 is turned off. Rule
identifier 51 still applies.

END_ALL Stops all rule identifiers declared by an
expression with attribute Mode="BEGIN".

 //myKeyword 50, 51 Block_on
 Code block 1;
 ...
 More code;
 //myKeyword Block_off_all

Rule identifiers 50 and 51 are turned off.
Regex Required Regular

expression
search string

See “Regular Expressions” (MATLAB).
Regex="myKeyword\s+(\w+(\s*,\s*
\w+)*)" matches these expressions:

// myKeyword 50, 51
/* myKeyword ALL_MISRA, 100 */

2 Fix or Comment Polyspace Results

2-16

Attribute Use Value Example
Rule_Identifier
_Position

Required, except
when you set
Mode="END_ALL"

Integer The integer value of this attribute
corresponds to the number of opening
parentheses in the regular expression
before the relevant search expression.

<Expression Mode="GOTO_INCREMENT"
Regex="myKeyword\s+(\+\d+\s)
(\w+(\s*,\s*\w+)*)"
Increment_Position="1"
Rule_Identifier_Position="2"/>

Note Enter the regex expression on a
single line when you edit your XML file.

The search expression for the rule
identifier \w+(\s*,\s*\w+)* is after the
second opening parenthesis of the regular
expression.

Increment_Posit
ion

Required only
when you set
Mode="GOTO_INC
REMENT"

Integer The integer value of this attribute
corresponds to the number of opening
parentheses in the regular expression
before the relevant search expression.

<Expression Mode="GOTO_INCREMENT"
Regex="myKeyword\s+(\+\d+\s)
(\w+(\s*,\s*\w+)*)"
Increment_Position="1"
Rule_Identifier_Position="2"/>

Note Enter the regex expression on a
single line when you edit your XML file.

The search expression for the increment \
+\d+\s is after the first opening
parenthesis of the regular expression.

Status_Position Optional Integer See Increment_Position example.
When you use this attribute, the entry in
your annotation is displayed in the Status
column on the Results List pane of the
user interface.

Severity_Positi
on

Optional Integer See Increment_Position example.
When you use this attribute, the entry in
your annotation is displayed in the
Severity column on the Results List pane
of the user interface.

 Define Custom Annotation Format

2-17

Attribute Use Value Example
Comment_Positio
n

Optional Integer See Increment_Position example.
When you use this attribute, the entry in
your annotation is displayed in the
Comment column on the Results List
pane of the user interface. Your comment
is appended to the string Justified by
annotation in source:

Case_Insensitiv
e

Optional True or false When you set this attribute to "true", the
regular expression is case insensitive,
otherwise it is case sensitive. If you do not
declare this attribute in your expression,
the regular expression is case sensitive.
For Case_Insensitive="true", these
annotations are equivalent:

//MYKEYWORD ALL_MISRA BLOCK_ON

//mykeyword all_misra block_on

Map Your Annotation to the Polyspace Annotation Syntax
After you define your annotation format, you can map the rule identifiers you are using to their
corresponding Polyspace annotation syntax. You can do this mapping by adding an
<Result_Name_Mapping/> element and specifying attributes Rule_Identifier, Family, and
Result_Name. For instance, if rule identifier 50 corresponds to MISRA C: 2012 rule 8.4, map it to the
Polyspace syntax MISRA-C3:8.4 by using this element:
<Result_Name_Mapping Rule_Identifier="50" Family="MISRA-C3" Result_Name="8.4"/>

The list of attributes and their values are listed in this table. The example column refers to the format
defined in annotations_description.xml.

Attribute Use Value Example
Rule_Identifier Required User defined See the mapping

section of
annotations_descri
ption.xml

Family Required Corresponds to
Polyspace results family.
For a list of allowed
values, see allowed
values on page 2-4.

See the mapping
section of
annotations_descri
ption.xml

Result_Name Required Corresponds to
Polyspace result names.
For a list of allowed
values, see allowed
values on page 2-4.

See the mapping
section of
annotations_descri
ption.xml

See Also
“Annotation Description Full XML Template” on page 2-20

2 Fix or Comment Polyspace Results

2-18

More About
• “Annotate Code and Hide Known or Acceptable Results” on page 2-4

 Define Custom Annotation Format

2-19

Annotation Description Full XML Template
This table lists all the elements, attributes, and values of the XML that you can use to define an
annotation format and map it to the Polyspace annotation syntax. For an example of how to edit an
XML to define annotation syntax, see “Define Custom Annotation Format” on page 2-13.

Element Attribute Use Value
Annotations Group Required User defined string. For

example, "Custom
Annotations"

Expressions Search_For_Keyword
s

Required User defined string.
This string is a keyword
you include in the
pattern of your
annotation syntax to
help identify it. For
example, "myKeyword"

Separator_Result_N
ame

Required User defined string.
This string is a
separator when you list
multiple Polyspace
result names in the
same annotation. For
example ","

Separator_Family_A
nd_Result_Name

Optional User defined string.
This string is a
separator when you list
multiple Polyspace
results families in the
same annotation. For
example, " "

Separator_Family Optional User defined string.
This string is a
separator when you list
a Polyspace results
family and results name
in the same annotation.
For example, ":"

Expression Mode Required SAME_LINE
GOTO_INCREMENT
BEGIN
END
END_ALL

2 Fix or Comment Polyspace Results

2-20

Element Attribute Use Value
NEXT_CODE_LINE

The annotation applies
to the next line of code.
Comments and blank
lines are ignored.
GOTO_LABEL
LABEL
XML_START
XML_CONTENT

The annotation for this
expression must be on a
single line.
XML_END

Regex Required Regular expression
search string that
matches the pattern of
your annotation.

Rule_Identifier_Po
sition

Required, except when
you set
Mode="END_ALL" or
"LABEL"

Integer. The integer
value of this attribute
corresponds to the
number of opening
parentheses in the
regular expression
before the relevant
search expression.

Increment_Position Required only when you
set
Mode="GOTO_INCREME
NT"

Integer. The integer
value of this attribute
corresponds to the
number of opening
parentheses in the
regular expression
before the relevant
search expression.

Status_Position Optional Integer. The integer
value of this attribute
corresponds to the
number of opening
parentheses in the
regular expression
before the relevant
search expression.

 Annotation Description Full XML Template

2-21

Element Attribute Use Value
Severity_Position Optional Integer. The integer

value of this attribute
corresponds to the
number of opening
parentheses in the
regular expression
before the relevant
search expression.

Comment_Position Optional Integer. The integer
value of this attribute
corresponds to the
number of opening
parentheses in the
regular expression
before the relevant
search expression.

Label_Position Required only when you
set
Mode="GOTO_LABEL"
or "LABEL"

Integer. The integer
value of this attribute
corresponds to the
number of opening
parentheses in the
regular expression
before the relevant
search expression.

Case_Insensitive Optional True or false. When you
do not declare this
attribute, the default
value is false.

Is_Pragma Optional True or false. When you
do not declare this
attribute, the default
value is false.

Set this attribute to true
if you want to declare
your annotation using a
pragma instead of a
comment.

Applies_Also_On_Sa
me_Line

Optional True or false. When you
do not declare this
attribute, the default
value is true.

Use this attribute to
enable annotations with
the old Polyspace syntax
to apply on the same
line of code.

2 Fix or Comment Polyspace Results

2-22

Element Attribute Use Value
Mapping None None None
Result_Name_Mappin
g

Rule_Identifier Required User defined
Family Required Corresponds to

Polyspace results family.
For a list of allowed
values, see allowed
values on page 2-4.

Result_Name Required Corresponds to
Polyspace result names.
For a list of allowed
values, see allowed
values on page 2-4.

Example
This example code covers some of the less commonly used attributes for defining annotations in XML.

 Annotation Description Full XML Template

2-23

<?xml version="1.0" encoding="UTF-8"?>

<Annotations xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:noNamespaceSchemaLocation="annotations_xml_schema.xsd"
 Group="XML Template">

 <Expressions Separator_Result_Name=","
 Search_For_Keywords="myKeyword">

 <Expression Mode="GOTO_LABEL"
 Regex="(\A|\W)myKeyword\s+S\s+(\d+(\s*,\s*\d+)*)\s+([a-zA-Z_-]\w+)"
 Rule_Identifier_Position="2"
 Label_Position="4"

 />

 <Expression Mode="LABEL"
 Regex="(\A|\W)myKeyword\s+L:(\w+)"
 Label_Position="2"

 />
 <!-- Annotation applies starting current line until
 next declaration of label word "myLabel"
 Example:

 code; // myKeyword S 100 myLabel
 ...
 more code;
 // myKeyword L myLabel
 -->

 <Expression Mode="BEGIN"
 Regex="#\s*pragma\s+myKeyword_MESSAGES_ON\s+(\w+)"
 Rule_Identifier_Position="1"
 Is_Pragma="true"
 />
 <!-- Annotation declared with pragma instead of comment
 Example:#pragma myKeyword_MESSAGES_ON 100 -->

 <!-- Comment declaration with XML format-->

 <!-- XML_START must be declared before XML_CONTENT -->
 <Expression Mode="XML_START"
 Regex="<\s*myKeyword_COMMENT\s*>"

 />
 <!-- Example: <myKeyword_COMMENT> -->

 <Expression Mode="XML_CONTENT"
 Regex="<\s*(\d*)\s*>(((?![*]/)(?!<).)*)</\s*(\d*)\s*>"
 Rule_Identifier_Position="1"
 Comment_Position="2"

 />
 <!-- Example: <100>This is my comment</100>
 XML_CONTENT must be declare on a single line.

 <100>This is my comment
 </100>
 is incorrect.
 -->

 <Expression Mode="XML_END"
 Regex="</\s*myKeyword_COMMENT\s*>"

 />
 <!-- Example: </myKeyword_COMMENT> -->
 </Expressions>

 <Mapping>

 <Result_Name_Mapping Rule_Identifier="100" Family="MISRA-C" Result_Name="4.1"/>
 </Mapping>
</Annotations>

2 Fix or Comment Polyspace Results

2-24

See Also

More About
• “Annotate Code and Hide Known or Acceptable Results” on page 2-4

 Annotation Description Full XML Template

2-25

Justify Coding Rule Violations Using Code Prover Checks
Coding rules are good practices that you observe for safe and secure code. Using the Polyspace
coding rule checkers, you find instances in your code that violate a coding rule standard such as
MISRA. If you run Code Prover, you also see results of checks that find run-time errors or prove their
absence. In some cases, the two kinds of results can be used together for efficient review. For
instance, you can use a green Code Prover check as rationale for not fixing a coding rule violation
(justification).

If you run MISRA checking in Code Prover, some of the checkers use Code Prover static analysis
under the hood to find MISRA violations. The MISRA checker in Code Prover is more rigorous
compared to Bug Finder because Code Prover keeps precise track of the data and control flow in your
code. For instance:

• MISRA C:2012 Rule 9.1: The rule states that the value of an object with automatic storage
duration shall not be read before it has been set. Code Prover uses the results of a Non-
initialized local variable check to determine the rule violations.

• MISRA C:2004 Rule 13.7: The rule states that the Boolean operations whose results are invariant
shall not be permitted. Code Prover uses the results of an Unreachable code check to identify
conditions that are always true or false.

In some other cases, the MISRA checkers do not suppress rule violations even though corresponding
green checks indicate that the violations have no consequence. You have the choice to do one of
these:

• Strictly conform to the standard and fix the rule violations.
• Manually justify the rule violations using the green checks as rationale.

Set a status such as No action planned to the result and enter the green check as rationale in
the result comments. You can later filter justified results using that status.

The following sections show examples of situations where you can justify MISRA violations using
green Code Prover checks.

Rules About Data Type Conversions
In some cases, implicit data type conversions are okay if the conversion does not cause an overflow.

In the following example, the line temp = var1 - var2; violates MISRA C:2012 Rule 10.3. The
rule states that the value of an expression shall not be assigned to an object of a different essential
type category. Here, the difference between two int variables is assigned to a char variable. You can
justify this particular rule violation by using the results of a Code Prover Overflow check.

int func (int var1, int var2) {
 char temp;
 temp = var1 - var2;
 if (temp > 0)
 return -1;
 else
 return 1;
}

double read_meter1(void);

2 Fix or Comment Polyspace Results

2-26

double read_meter2(void);

int main(char arg, char* argv[]) {
 int meter1 = (read_meter1()) * 10;
 int meter2 = (read_meter2()) * 999;
 int tol = 10;
 if((meter1 - meter2)> -tol && (meter1 - meter2) < tol)
 func(meter1, meter2);
 return 0;
}

Consider the rationale behind this rule. The use of implicit conversions between types can lead to
unintended results, including possible loss of value, sign, or precision. For a conversion from int to
char, a loss of sign or precision cannot happen. The only issue is a potential loss of value if the
difference between the two int variables overflows.

Run Code Prover on this code. On the Source Code pane, click the = in temp = var1 - var2;.
You see the expected violation of MISRA C:2012 Rule 10.3, but also a green Overflow check.

The green check indicates that the conversion from int to char does not overflow.

You can use the green overflow check as rationale to justify the rule violation.

Rules About Pointer Arithmetic
Pointer arithmetic on nonarray pointers are okay if the pointers stay within the allowed buffer.

In the following example, the operation ptr++ violates MISRA C:2004 Rule 17.4. The rule states that
array indexing shall be the only allowed form of pointer arithmetic. Here, a pointer that is not an
array is incremented.

#define NUM_RECORDS 3
#define NUM_CHARACTERS 6

void readchar(char);

int main(int argc, char* argv[]) {
 char dbase[NUM_RECORDS][NUM_CHARACTERS] = { "r5cvx", "a2x5c", "g4x3c"};
 char *ptr = &dbase[0][0];
 for (int index = 0; index < NUM_RECORDS * NUM_CHARACTERS; index++) {
 readchar(*ptr);
 ptr++;
 }
 return 0;
}

Consider the rationale behind this rule. After an increment, a pointer can go outside the bounds of an
allowed buffer (such as an array) or even point to an arbitrary location. Pointer arithmetic is fine as

 Justify Coding Rule Violations Using Code Prover Checks

2-27

long as the pointer points within an allowed buffer. You can justify this particular rule violation by
using the results of a Code Prover Illegally dereferenced pointer check.

Run Code Prover on this code. On the Source Code pane, click the ++ in ptr++. You see the
expected violation of MISRA C:2004 Rule 17.4.

Click the * on the operation readchar(*ptr). You see a green Illegally dereferenced pointer
check. The green check indicates that the pointer points within allowed bounds when dereferenced.

You can use the green check to justify the rule violation.

See Also

Related Examples
• “Address Polyspace Results Through Bug Fixes or Justifications” on page 2-2

2 Fix or Comment Polyspace Results

2-28

Manage Results

• “Filter and Sort Results” on page 3-2
• “Prioritize Check Review” on page 3-7

3

Filter and Sort Results
When you open the results of a Polyspace analysis in the DASHBOARD view of Polyspace Access,
you see statistics about your project in the Project Overview dashboard. The statistics cover findings
for defects (Bug Finder), run-time checks (Code Prover), coding rule violations or other results. To
organize your review, you can narrow down the list or group results by file or result type.

3 Manage Results

3-2

 Filter and Sort Results

3-3

Some of the ways you can use filtering are:

• You can display certain types of defects or run-time checks only.

For instance, for a Bug Finder analysis, you can display only high-impact defects. See
“Classification of Defects by Impact” (Polyspace Bug Finder Access).

• You can display only new results found since the last analysis.
• You can display only the results that you have not justified. Results that are not justified are

considered Open. They are results with status Unreviewed, To Investigate, To Fix, or
Other.

For information on justification, see“Address Polyspace Results Through Bug Fixes or
Justifications” on page 2-2 .

Filter Results
You can filter results by drilling down on a set of results in a dashboard, or directly in the Results
List pane by using the REVIEW toolstrip filters.

Filter Using Dashboards

In the DASHBOARD view, you can:

• Click a section of a pie chart or a pie chart legend on the Project Overview dashboard to see the
corresponding set of results.

• Open dashboards for different families of results, then click a number to open a list filtered to the
corresponding set of results. For instance:

• To see only high-impact defects that are still Open in a Bug Finder analysis, click the
corresponding number in the Summary section of the Defects dashboard. Open results have
status Unreviewed, To Investigate, To Fix, or Other.

3 Manage Results

3-4

• To see only red checks that are Done in a Code Prover analysis, click the corresponding
number in the Summary section of the Run-time Checks dashboard. Done results have
status Justified, No Action Planned, or Not A Defect.

• To see violations of the MISRAC C:2012 coding standards in a particular file, use the table in
the Details section of the MISRA C:2012 dashboard.

If you select a folder that contains multiple projects in the PROJECT EXPLORER, the dashboards
display an aggregate of results for all the projects. Most of the fields in the dashboard are not
clickable when you look at the statistics for multiple projects.

Filter Using REVIEW Toolstrip

In the REVIEW view, you can filter using the buttons in the toolstrip. The filter bar underneath the
toolstrip shows how many findings are displayed out of the total findings, along with which filters are
currently applied.

The buttons in the FILTERS section of the toolstrip are global. They apply to all families of findings.

To filter results by specific content, such as a function name, use the Show only or Filter out text
filters. These filters match the text you enter against the content of all the columns in the “Results
List” on page 1-37. For instance, if you enter foo in the Filter out filter, the Results List hides all
the results that contain foo in any of the Results List columns.

You can also filter results by right-clicking the content of a column in the Results List. This action is
equivalent to entering the content directly in the Show only or Filter out text filters. For instance, if
you right-click foo in the Function column, the filter applies to all results that contain foo in any of
the Results List columns.

Filters you apply do not carry over to the next analysis.

Filter Using Orange Sources

An orange source can cause multiple orange checks in Code Prover. You can display all orange checks
from the same source and review them together.

For instance, in this code, the unknown value input can cause an overflow and a division by zero.
The variable input is an orange source that causes two orange checks.

void func (int input) {
int val1;

 Filter and Sort Results

3-5

double val2;
val1 = input++;
val2 = 1.0/input;
}

To begin, in the REVIEW view, select Layout > Show/Hide View > Orange Sources. You see the
list of orange sources. Select an orange source to see all orange checks coming from this source.

See Also

More About
• “Prioritize Check Review” on page 3-7

3 Manage Results

3-6

Prioritize Check Review
This example shows how to prioritize your check review. Try the following approach. You can also
develop your own procedure for organizing your orange check review.

Tip For easier review, run Polyspace Bug Finder on your source code first. Once you address the
defects that Polyspace Bug Finder finds, run Polyspace Code Prover on your code.

Before beginning your check review, you can check the following:

• See the Run Log,by going to Layout > Show/Hide View in the REVIEW view. Use CTRL-F to
search the log for warning and error messages, or the string failed compilation. If there are
warnings or errors, or files failed to compile, identify why Polyspace could not analyze all of your
source files.

To check for some common Reasons for Unchecked Code, see the documentation for Polyspace
Code Prover.

• See if you have used the right configuration. The configuration options are listed in the Run Log
under the strings Options used with Verifier: and User:.

Sometimes, especially if you are switching between multiple configurations, you can accidentally
use the wrong configuration for the verification.

1 From the Project Overview dashboard, click the number next to Open on the Run-time
Checks card.

This action opens the Results List pane with only unreviewed red, gray and orange checks. You
can also filter for these results from the toolstrip in the REVIEW view by clicking Run-time
Checks and To Do.

2 Select and review the first check.

For more information, see “Interpret Polyspace Code Prover Access Results” on page 1-2.

Continue going through the list until you have reviewed all of the checks.
3 Before reviewing orange checks, review red and gray checks.
4 Prioritize your orange check review by:

• For easier review, begin your orange check review from files with fewer orange checks.

To sort files by number of orange checks, in the Details section of the Run-time Checks
dashboard, click View by File, then click the head of the Orange column to sort it. Click an
entry from this column to open the corresponding list of orange checks.

• Check type: Review orange checks in the following order. Checks are more difficult to review
as you go down this order.

 Prioritize Check Review

3-7

Review Order Checks
First • Out of bounds array index

• Non-initialized local
variable

• Division by zero
• Invalid shift operations

Second • Overflow
• Illegally dereferenced

pointer
Third Remaining checks

• Orange check sources: Review all orange checks caused by a single variable or function.
Orange checks often arise from variables whose values cannot be determined from the code
or functions that are not defined.

To review the sources of orange checks, select an orange check from the Results List pane

then click in the Results Details pane. You can also open the Orange Sources pane by
going to Layout > Show/Hide View. For more information, see “Filter Using Orange
Sources” on page 3-5.

• Result details: Review all results that originate from the same cause. Sometimes, the Detail
column on the Results List pane shows additional information about a result. For instance, if
multiple issues trigger the same coding rule violation, this column shows the issue. Click the
column header so that results that originate from the same type of issue are grouped
together. Review the results in one go.

5 To see what percentage of checks you have justified, go to the DASHBOARD view and see the
Summary section of the Run-time Checks dashboard.

See Also

Related Examples
• “Filter and Sort Results” on page 3-2

3 Manage Results

3-8

Reviewing Checks

• “Review and Fix Absolute Address Usage Checks” on page 4-2
• “Review and Fix Correctness Condition Checks” on page 4-3
• “Review and Fix Division by Zero Checks” on page 4-7
• “Review and Fix Function Not Called Checks” on page 4-11
• “Review and Fix Function Not Reachable Checks” on page 4-13
• “Review and Fix Function Not Returning Value Checks” on page 4-15
• “Review and Fix Illegally Dereferenced Pointer Checks” on page 4-17
• “Review and Fix Incorrect Object Oriented Programming Checks” on page 4-23
• “Review and Fix Invalid C++ Specific Operations Checks” on page 4-25
• “Review and Fix Invalid Shift Operations Checks” on page 4-27
• “Review and Fix Invalid Use of Standard Library Routine Checks” on page 4-31
• “Invalid Use of Standard Library Floating Point Routines” on page 4-33
• “Review and Fix Non-initialized Local Variable Checks” on page 4-36
• “Review and Fix Non-initialized Pointer Checks” on page 4-39
• “Review and Fix Non-initialized Variable Checks” on page 4-41
• “Review and Fix Non-Terminating Call Checks” on page 4-43
• “Identify Function Call with Run-Time Error” on page 4-45
• “Review and Fix Non-Terminating Loop Checks” on page 4-47
• “Identify Loop Operation with Run-Time Error” on page 4-50
• “Review and Fix Null This-pointer Calling Method Checks” on page 4-52
• “Review and Fix Out of Bounds Array Index Checks” on page 4-54
• “Review and Fix Overflow Checks” on page 4-58
• “Review and Fix Return Value Not Initialized Checks” on page 4-62
• “Review and Fix Uncaught Exception Checks” on page 4-65
• “Review and Fix Unreachable Code Checks” on page 4-67
• “Review and Fix User Assertion Checks” on page 4-71
• “Find Relations Between Variables in Code” on page 4-74
• “Review Polyspace Results on AUTOSAR Code” on page 4-77

4

Review and Fix Absolute Address Usage Checks
Follow one or more of these steps until you determine a fix for the Absolute address usage check.
There are multiple ways to fix this check. For a description of the check and code examples, see
Absolute address usage.

Tip This check is green by default. To reduce the number of orange checks, if you trust that all
absolute addresses in your code are valid, you can retain this default behavior.

For best use of this check, leave this check green by default during initial stages of development.
During integration stage, use the option -no-assumption-on-absolute-addresses and detect
all uses of absolute memory addresses. Browse through them and make sure that the addresses are
valid. For more information on analysis options, see the documentation for Polyspace Code Prover or
Polyspace Code Prover Server.

1 Select the check on the Results List pane.

The Source pane displays the code operation containing the absolute address.
2 If you determine that the address is valid, add a comment and justification in your result or code.

See “Address Polyspace Results Through Bug Fixes or Justifications” on page 2-2.

4 Reviewing Checks

4-2

Review and Fix Correctness Condition Checks
Follow one or more of these steps until you determine a fix for the Correctness condition check.
There are multiple ways to fix a red or orange check. For a description of the check and code
examples, see Correctness condition.

Sometimes, especially for an orange check, you can determine that the check does not represent a
real error but a Polyspace assumption that is not true for your code. If you can use an analysis option
to relax the assumption, rerun the verification using that option. Otherwise, you can add a comment
and justification in your result or code.

For the general workflow that applies to all checks, see “Interpret Polyspace Code Prover Access
Results” on page 1-2.

Step 1: Interpret Check Information
On the Results List pane, select the check. View the cause of check on the Result Details pane. The
following list shows some of the possible causes:

• An array is converted to another array of larger size.

In the following example, a red check occurs because an array is converted to another array of
larger size.

• When dereferenced, a function pointer has value NULL.

In the following example, a red check occurs because, when dereferenced, a function pointer has
value NULL.

• When dereferenced, a function pointer does not point to a function.

In the following example, an orange check occurs because Polyspace cannot determine if a
function pointer points to a function when dereferenced. This situation can occur if, for instance,
you assign an absolute address to the function pointer.

• A function pointer points to a function, but the argument types of the pointer and the function do
not match. For example:

typedef int (*typeFuncPtr) (complex*);
int func(int* x);

 Review and Fix Correctness Condition Checks

4-3

.

.
typeFuncPtr funcPtr = &func;

In the following example, a red check occurs because:

• The function pointer points to a function func.
• func expects an argument of type int, but the corresponding argument of the function

pointer is a structure.

• A function pointer points to a function, but the argument numbers of the pointer and the function
do not match. For example:

typedef int (*typeFuncPtr) (int, int);
int func(int);
.
.
typeFuncPtr funcPtr = &func;.

In the following example, a red check occurs because:

• The function pointer points to a function func.
• func expects one argument but the function pointer has two arguments.

• A function pointer points to a function, but the return types of the pointer and the function do not
match. For example:

typedef double (*typeFuncPtr) (int);
int func(int);
.
.
typeFuncPtr funcPtr = &func;

In the following example, a red check occurs because:

• The function pointer points to a function func.
• func returns an int value, but the return type of the function pointer is double.

4 Reviewing Checks

4-4

• The value of a variable falls outside the range that you specify through the Global Assert mode.
See the documentation for Polyspace Code Prover or Polyspace Code Prover Server.

In the following example, a red check occurs because:

• You specify a range 0...10 for the variable glob.
• The value of the variable falls outside this range.

Step 2: Determine Root Cause of Check
Based on the check information on the Result Details pane, perform further steps to determine the
root cause. You can perform the following steps in the Polyspace user interface only.

Check Information How to Determine Root Cause
An array is converted to another array of larger
size.

1 To determine the array sizes, see the
definition of each array variable.

Right-click the variable and select Go To
Definition.

2 If you dynamically allocate memory to an
array, it is possible that their sizes are not
available during definition. Browse through
all instances of the array variable to find
where you allocate memory to the array.

a Right-click the variable. Select Search
For All References.

All instances of the variable appear on
the Search pane with the current
instance highlighted.

b On the Search pane, select the previous
instances.

 Review and Fix Correctness Condition Checks

4-5

Check Information How to Determine Root Cause
Issues when dereferencing a function pointer:

• The function pointer has value NULL when
dereferenced.

• The function pointer does not point to a
function when dereferenced.

• The function pointer points to a function, but
the argument types of the pointer and the
function do not match.

• The function pointer points to a function, but
the argument numbers of the pointer and the
function do not match.

• The function pointer points to a function, but
the return types of the pointer and the
function do not match.

1 Find the location where you assign the
function pointer to a function.

a Right-click the function pointer. Select
Search For All References.

All instances of the function pointer
appear on the Search pane with the
current instance highlighted.

b On the Search pane, select the previous
instances.

2 Determine the argument and return types of
the function pointer type and the function.
Identify if there is a mismatch between the
two. For instance, in the following example,
determine the argument and return types of
typeFuncPtr and func.

typeFuncPtr funcPtr = func;

a Right-click the function pointer type and
select Go To Definition.

b Right-click the function and select Go To
Definition. If the definition does not
exist, this option shows the function stub
definition instead. In this case, find the
function declaration.

3 Sometimes, you assign a function pointer to a
function with matching signature, but the
assignment is unreachable. Check if this is
the case.

The value of a variable falls outside the range
that you specify through the Global Assert
mode.

Browse through all previous instances of the
global variable. Identify a suitable point to
constrain the variable.

1 Right-click the variable. Select Show In
Variable Access View.

2 On the Variable Access pane, select each
instance of the variable.

Step 3: Trace Check to Polyspace Assumption
See if you can trace the orange check to a Polyspace assumption that occurs earlier in the code. If the
assumption does not hold true in your case, add a comment or justification in your result or code. See
“Address Polyspace Results Through Bug Fixes or Justifications” on page 2-2.

4 Reviewing Checks

4-6

Review and Fix Division by Zero Checks
Follow one or more of these steps until you determine a fix for the Division by zero check. There are
multiple ways to fix a red or orange check. For a description of the check and code examples, see
Division by zero.

Sometimes, especially for an orange check, you can determine that the check does not represent a
real error but a Polyspace assumption that is not true for your code. If you can use an analysis option
to relax the assumption, rerun the verification using that option. Otherwise, you can add a comment
and justification in your result or code.

For the general workflow that applies to all checks, see “Interpret Polyspace Code Prover Access
Results” on page 1-2.

Step 1: Interpret Check Information
Place your cursor on the / or % operation that causes the Division by zero error.

Obtain the following information from the tooltip:

• The values of the right operand (denominator).

In the preceding example, the right operand, val, has a range that contains zero.

Possible fix: To avoid the division by zero, perform the division only if val is not zero.

Integer Floating-point
if(val != 0)
 func(1.0/val);
else
 /* Error handling */

#define eps 0.0000001
.
.
if(val < -eps || val > eps)
 func(1.0/val);
else
 /* Error handling */

• The probable root cause for division by zero, if indicated in the tooltip.

In the preceding example, the software identifies a stubbed function, getVal, as probable cause.

Possible fix: To avoid the division by zero, constrain the return value of getVal. For instance,
specify that getVal returns values in a certain range, for example, 1..10. To specify constraints,
use the analysis option Constraint setup (-data-range-specifications). For more
information on analysis options, see the documentation for Polyspace Code Prover or Polyspace
Code Prover Server.

 Review and Fix Division by Zero Checks

4-7

Step 2: Determine Root Cause of Check
Before a / or % operation, test if the denominator is zero. Provide appropriate error handling if the
denominator is zero.

Only if you do not expect a zero denominator, determine root cause of check. Trace the data flow
starting from the denominator variable. Identify a point where you can specify a constraint to prevent
the zero value.

In the following example, trace the data flow starting from arg2:

void foo() {
 double time = readTime();
 double dist = readDist();
 .
 .
 bar(dist,time);
}

void bar(double arg1, double arg2) {
 double vel;
 vel=arg1/arg2;
}

You might find that:

1 bar is called with full-range of values.

Possible fix: Call bar only if its second argument time is greater than zero.
2 time obtains a full-range of values from readTime.

Possible fix: Constrain the return value of readTime, either in the body of readTime or through
the Polyspace Constraint Specification interface, if you do not have the definition of readTime.
For more information, see “Stubbed Functions” on page 6-7.

To trace the data flow, select the check and note the information on the Result Details pane.

• If the Result Details pane shows the sequence of instructions that lead to the check, select each
instruction.

• If the Result Details pane shows the line number of probable cause for the check, right-click on
the Source pane. Select Go To Line.

• Otherwise:

1 Find the previous write operation on the operand variable.

Example: The value of arg2 is written from the value of time in bar.
2 At the previous write operation, identify a new variable to trace back.

Place your cursor on the variables involved in the write operation to see their values. The
values help you decide which variable to trace.

Example: At bar(dist,time), you find that time has a full-range of values. Therefore, you
trace time.

3 Find the previous write operation on the new variable. Continue tracing back in this way until
you identify a point to specify your constraint.

4 Reviewing Checks

4-8

Example: The previous write operation on time is time=readTime(). You can choose to
specify your constraint on the return value of readTime.

Depending on the variable, use the following navigation shortcuts to find previous instances. You can
perform the following steps in the Polyspace user interface only.

Variable How to Find Previous Instances of Variable
Local Variable Use one of the following methods:

• Search for the variable.

1 Right-click the variable. Select Search For All References.

All instances of the variable appear on the Search pane with
the current instance highlighted.

2 On the Search pane, select the previous instances.
• Browse the source code.

1 Double-click the variable on the Source pane.

All instances of the variable are highlighted.
2 Scroll up to find the previous instances.

Global Variable

Right-click the variable. If the
option Show In Variable
Access View appears, the
variable is a global variable.

1 Select the option Show In Variable Access View.

On the Variable Access pane, the current instance of the
variable is shown.

2 On this pane, select the previous instances of the variable.

Write operations on the variable are indicated with and read
operations with .

Function return value

ret=func();

1 Find the function definition.

Right-click func on the Source pane. Select Go To Definition,
if the option exists. If the definition is not available to Polyspace,
selecting the option takes you to the function declaration.

2 In the definition of func, identify each return statement. The
variable that the function returns is your new variable to trace
back.

You can also determine if variables in any operation are related from some previous operation. See
“Find Relations Between Variables in Code” on page 4-74.

Step 3: Look for Common Causes of Check
Look for common causes of the Division by zero check.

• For a variable that you expect to be non-zero, see if you test the variable in your code to exclude
the zero value.

 Review and Fix Division by Zero Checks

4-9

Otherwise, Polyspace cannot determine that the variable has non-zero values. You can also specify
constraints outside your code. See the documentation for Polyspace Code Prover or Polyspace
Code Prover Server.

• If you test the variable to exclude its zero value, see if the test occurs in a reduced scope
compared to the scope of the division.

For example, a statement assert(var !=0) occurs in an if or while block, but a division by
var occurs outside the block. If the code does not enter the if or while block, the assert does
not execute. Therefore, outside the if or while block, Polyspace assumes that var can still be
zero.

Possible fix:

• Investigate why the test occurs in a reduced scope. In the above example, see if you can place
the statement assert(var !=0) outside the if or for block.

• If you expect the if or while block to always execute, investigate when it does not execute.

Step 4: Trace Check to Polyspace Assumption
See if you can trace the orange check to a Polyspace assumption that occurs earlier in the code. If the
assumption does not hold true in your case, add a comment or justification in your result or code. See
“Address Polyspace Results Through Bug Fixes or Justifications” on page 2-2.

For instance, you are using a volatile variable in your code. Then:

1 Polyspace assumes that the variable is full-range at every step in the code. The range includes
zero.

2 A division by the variable can cause Division by zero error.
3 If you know that the variable takes a non-zero value, add a comment and justification describing

why you did not change your code.

For more information, see “Code Prover Analysis Assumptions”.

Note Before justifying an orange check, consider carefully whether you can improve your coding
design.

Disabling This Check

You can effectively disable this check. If your compiler supports infinities and NaNs from floating-
point operations, you can enable a verification mode that incorporates infinities and NaNs. See
Consider non finite floats (-allow-non-finite-floats). For more information on
analysis options, see the documentation for Polyspace Code Prover or Polyspace Code Prover Server.

4 Reviewing Checks

4-10

Review and Fix Function Not Called Checks
Follow one or more of these steps until you determine a fix for the Function not called check. There
are multiple ways to fix this check. For a description of the check and code examples, see Function
not called.

If you determine that the check represents defensive code or a function that is part of a library, add a
comment and justification in your result or code explaining why you did not change your code. See
“Address Polyspace Results Through Bug Fixes or Justifications” on page 2-2.

Note This check is not turned on by default. To turn on this check, you must specify the appropriate
analysis option. For more information, see Detect uncalled functions (-uncalled-
function-checks). For more information on analysis options, see the documentation for Polyspace
Code Prover or Polyspace Code Prover Server.

Step 1: Interpret Check Information
On the Results List pane, select the check. On the Source pane, the body of the function is
highlighted in gray.

Step 2: Determine Root Cause of Check
1 Search for the function name and see if you can find a call to the function in your code.

On the Search pane, enter the function name. From the drop-down list beside the search field,
select Source.

Possible fix: If you do not find a call to the function, determine why the function definition exists
in your code.

2 If you find a call to the function, see if it occurs in the body of another uncalled function.

Possible fix: Investigate why the latter function is not called.
3 See if you call the function indirectly, for example, through function pointers.

If the indirection is too deep, Polyspace sometimes cannot determine that a certain function is
called.

Possible fix: If Polyspace cannot determine that you are calling a function indirectly, you must
verify the function separately. You do not need to write a new main function for this other
verification. Polyspace can generate a main function if you do not provide one in your source. You

 Review and Fix Function Not Called Checks

4-11

can change the main generation options if needed. For more information on the options, see the
documentation for Polyspace Code Prover or Polyspace Code Prover Server.

Step 3: Look for Common Causes of Check
Look for the following common causes of the Function not called check.

• Determine if you intended to call the function but used another function instead.
• Determine if you intended to replace some code with a function call. You wrote the function
definition, but forgot to replace the original code with the function call.

If this situation occurs, you are likely to have duplicate code.
• See if you intend to call the function from yet unwritten code. If so, retain the function definition.
• For code intended for multitasking, see if you have specified all your entry point functions.

To see the options used for the result, select the link View configuration for results on the
Dashboard pane.

For more information, see Tasks (-entry-points). For more information on analysis options,
see the documentation for Polyspace Code Prover or Polyspace Code Prover Server.

• For code intended for multitasking, see if your main function contains an infinite loop. Polyspace
Code Prover requires that your main function must complete execution before the other entry
points begin.

4 Reviewing Checks

4-12

Review and Fix Function Not Reachable Checks
Follow one or more of these steps until you determine a fix for the Function not reachable check.
There are multiple ways to fix this check. For a description of the check and code examples, see
Function not reachable.

If you determine that the check represents defensive code, add a comment and justification in your
result or code explaining why you did not change your code. See “Address Polyspace Results Through
Bug Fixes or Justifications” on page 2-2.

Note This check is not turned on by default. To turn on this check, you must specify the appropriate
analysis option. For more information, see Detect uncalled functions (-uncalled-
function-checks). For more information on analysis options, see the documentation for Polyspace
Code Prover or Polyspace Code Prover Server.

Step 1: Interpret Check Information
Select the check on the Results List pane. On the Source pane, you can see the function definition
in gray.

Step 2: Determine Root Cause of Check
Determine where the function is called and review why all the function call sites are unreachable. You
can perform the following steps in the Polyspace user interface only.

1 Select the check on the Results List pane.
2

On the Result Details pane, click the button.

On the Call Hierarchy pane, you see the callers of the function denoted by .
3 On the Call Hierarchy pane, select each caller.

This action takes you to the function call on the Source pane.
4 See if the caller itself is called from unreachable code. If the caller definition is entirely in gray

on the Source pane, it is called from unreachable code. Follow the same investigation process,
starting from step 1, for the caller.

 Review and Fix Function Not Reachable Checks

4-13

5 Otherwise, investigate why the section of code from which you call the function is unreachable.

The code can be unreachable because it follows a red check or because it contains the gray
Unreachable code check.

• If a red check occurs, fix your code to remove the check.
• If a gray Unreachable code check occurs, review the check and determine if you must fix

your code. See “Review and Fix Unreachable Code Checks” on page 4-67.

Note If you do not see a caller name on the Call Hierarchy pane, determine if you are calling the
function indirectly, for example through a function pointer. Determine if a mismatch occurs between
the function pointer declaration and the function call through the pointer.

Polyspace places a red or orange Correctness condition check on the indirect call if a mismatch
occurs. To detect a mismatch in indirect function calls, look for the Correctness condition check on
the Results List pane. For more information, see Correctness condition.

4 Reviewing Checks

4-14

Review and Fix Function Not Returning Value Checks
Follow one or more of these steps until you determine a fix for the Function not returning value
check. For a description of the check and code examples, see Function not returning value.

For the general workflow that applies to all checks, see “Interpret Polyspace Code Prover Access
Results” on page 1-2.

Step 1: Interpret Check Information
Select the check on the Results List pane. The Result Details pane displays further information
about the check.

You can see:

• The immediate cause of the check.

In this example, the software has identified that a function with a non-void return type might not
have a return statement.

• The probable root cause of the check, if indicated.

In this example, the software has identified that the check is possibly path-related. More than one
call to the function exists, and the check is green on at least one call.

Step 2: Determine Root Cause of Check
Determine why a return statement does not exist on certain execution paths.

1 Browse the function body for return statements.
2 If you find a return statement:

a See if the return statement occurs in a block inside the function.

For instance, the return statement occurs in an if block. An execution path that does not
enter the if block bypasses the return statement.

b See if you can identify the execution paths that bypass the return statement.

For instance, an if block that contains the return statement is bypassed for certain
function inputs.

c If the function is called multiple times in your code, you can identify which function call led
to bypassing of the return statement. Use the option Sensitivity context (-
context-sensitivity) to determine the check color for each function call. For more
information on analysis options, see the documentation for Polyspace Code Prover or
Polyspace Code Prover Server.

Possible fix: If the return type of the function is incorrect, change it. Otherwise, add a return
statement on all execution paths. For instance, if only a fraction of branches of an if-else if-else

 Review and Fix Function Not Returning Value Checks

4-15

condition have a return statement, add a return statement in the remaining branches.
Alternatively, add a return statement outside the if-else if-else condition.

4 Reviewing Checks

4-16

Review and Fix Illegally Dereferenced Pointer Checks
Follow one or more of these steps until you determine a fix for the Illegally dereferenced pointer
check. There are multiple ways to fix this check. For a description of the check and code examples,
see Illegally dereferenced pointer.

Sometimes, especially for an orange check, you can determine that the check does not represent a
real error but a Polyspace assumption that is not true for your code. If you can use an analysis option
to relax the assumption, rerun the verification using that option. Otherwise, you can add a comment
and justification in your result or code.

For the general workflow that applies to all checks, see “Interpret Polyspace Code Prover Access
Results” on page 1-2.

Step 1: Interpret Check Information
Place your cursor on the dereference operator.

Obtain the following information from the tooltip:

• Whether the pointer can be NULL.

In the following example, ptr can be NULL when dereferenced.

Possible fix: Dereference ptr only if it is not NULL.

if(ptr !=NULL)
 *ptr = 1;
else
 /* Alternate action */

• Whether the pointer points to dynamically allocated memory.

In the following example, ptr can point to dynamically allocated memory. It is possible that the
dynamic memory allocation operator returns NULL.

 Review and Fix Illegally Dereferenced Pointer Checks

4-17

Possible fix: Check the return value of the memory allocation operator for NULL.

ptr = (char*) malloc(i);
if(ptr==NULL)
 /* Error handling*/
else {
 .
 .
 *ptr=0;
 .
 .
}

• Whether pointer points outside allowed bounds. A pointer points outside bounds when the sum of
pointer size and offset is greater than buffer size.

In the following example, the offset size (4096 bytes) together with pointer size (4 bytes) is
greater than the buffer size (4096 bytes). If the pointer points to an array:

• The buffer size is the array size.
• The offset is the difference between the beginning of the array and the current location of the

pointer.

Possible fix: Investigate why the pointer points outside the allowed buffer.
• Whether pointer can point outside allowed bounds because buffer size is unknown.

In the following example, the buffer size is unknown.

4 Reviewing Checks

4-18

Possible fix: Investigate whether the pointer is assigned:

• The return value of an undefined function.
• The return value of a dynamic memory allocation function. Sometimes, Polyspace cannot

determine the buffer size from the dynamic memory allocation.
• Another pointer of a different type, for instance, void*.

• The probable root cause for illegal pointer dereference, if indicated in the tooltip.

In the following example, the software identifies a stubbed function, getAddress, as probable
cause.

Possible fix: To avoid the illegally dereferenced pointer, constrain the return value of getAddress.
For instance, specify that getAddress returns a pointer to a 10-element array. For more
information, see “Stubbed Functions” on page 6-7.

Step 2: Determine Root Cause of Check
Select the check and note the information on the Result Details pane.

• If the Result Details pane shows the sequence of instructions that lead to the check, select each
instruction and trace back to the root cause.

• If the Result Details pane shows the line number of probable cause for the check, in the
Polyspace user interface, right-click the Source pane. Select Go To Line.

• Otherwise, based on the nature of the error, use one of the following methods to find the root
cause. You can perform the following steps in the Polyspace user interface only.

 Review and Fix Illegally Dereferenced Pointer Checks

4-19

Error How to Find Root Cause
Pointer can be NULL. Find an execution path where the pointer is assigned the value NULL

or not assigned a definite address.

1 Right-click the pointer and select Search For All References.
2 Find each previous instance where the pointer is assigned an

address.
3 For each instance, on the Source pane, place your cursor on the

pointer. The tooltip indicates whether the pointer can be NULL.

Possible fix: If the pointer can be NULL, place a check for NULL
immediately after the assignment.

if(ptr==NULL)
 /* Error handling*/
else {
 .
 .
 }

4 If the pointer is not NULL, see if the assignment occurs only in a
branch of a conditional statement. Investigate when that branch
does not execute.

Possible fix: Assign a valid address to the pointer in all branches
of the conditional statement.

Pointer can point to
dynamically allocated
memory.

Identify where the allocation occurs.

1 Right-click the pointer and select Search For All References.
2 Find the previous instance where the pointer receives a value

from a dynamic memory allocation function such as malloc.

Possible fix: After the allocation, test the pointer for NULL.

4 Reviewing Checks

4-20

Error How to Find Root Cause
Pointer can point
outside bounds allowed
by the buffer.

1 Find the allowed buffer.

a On the Search tab, enter the name of the variable that the
pointer points to. You already have this name from the tooltip
on the check.

b Search for the variable definition. Typically, this is the first
search result.

If the variable is an array, note the array size. If the variable
is a structure, search for the structure type name on the
Search tab and find the structure definition. Note the size of
the structure field that the pointer points to.

2 Find out why the pointer points outside the allowed buffer.

a Right-click the pointer and select Search For All
References.

b Identify any increment or decrement of the pointer. See if you
intended to make the increment or decrement.

Possible fix: Remove unintended pointer arithmetic. To avoid
pointer arithmetic that takes a pointer outside allowed buffer,
use a reference pointer to store its initial value. After every
arithmetic operation on your pointer, compare it with the
reference pointer to see if the difference is outside the
allowed buffer.

Step 3: Look for Common Causes of Check
Look for common causes of the Illegally dereferenced pointer check.

• If you use pointers for moving through an array, see if you can use an array index instead.

To avoid use of pointer arithmetic in your code, look for violations of MISRA C: 2004 rule 17.4 or
MISRA C: 2012 rule 18.4.

• See if you use pointers for moving through the fields of a structure.

Polyspace does not allow the pointer to one field of a structure to point to another field. To allow
this behavior, use the option Enable pointer arithmetic across fields (-allow-ptr-
arith-on-struct).

• See if you are dereferencing a pointer that points to a structure but does not have sufficient
memory for all its fields. Such a pointer usually results from type-casting a pointer to a smaller
structure.

Polyspace does not allow such dereference. To allow this behavior, use the option Allow
incomplete or partial allocation of structures (-size-in-bytes).

• If an orange check occurs in a function body, see if you are passing arrays of different sizes in
different calls to the function.

See if one particular call causes the orange check.

 Review and Fix Illegally Dereferenced Pointer Checks

4-21

• See if you are performing a cast between two pointers of incompatible sizes.

For more information on analysis options, see the documentation for Polyspace Code Prover or
Polyspace Code Prover Server.

Step 4: Trace Check to Polyspace Assumption
See if you can trace the orange check to a Polyspace assumption that occurs earlier in the code. If the
assumption does not hold true in your case, add a comment or justification in your result or code. See
“Address Polyspace Results Through Bug Fixes or Justifications” on page 2-2.

For instance, the pointer receives an address from an undefined function. Then:

1 Polyspace assumes that the function can return NULL.

Therefore, the pointer dereference is orange.
2 Polyspace also assumes an allowed buffer size based on the type of the pointer.

If you increment the pointer, you exceed the allowed buffer. The pointer dereference that follows
the increment is orange.

3 If you know that the function returns a non-NULL value or if you know the true allowed buffer,
add a comment and justification in your code describing why you did not change your code.

For more information, see “Code Prover Analysis Assumptions”.

Note Before justifying an orange check, consider carefully whether you can improve your coding
design.

4 Reviewing Checks

4-22

Review and Fix Incorrect Object Oriented Programming Checks
In this section...
“Step 1: Interpret Check Information” on page 4-23
“Step 2: Determine Root Cause of Check” on page 4-23

Follow one or more of these steps until you determine a fix for the Incorrect object oriented
programming check. For a description of the check and code examples, see Incorrect object
oriented programming.

For the general workflow that applies to all checks, see “Interpret Polyspace Code Prover Access
Results” on page 1-2.

Step 1: Interpret Check Information
On the Results List pane, select the check. The Result Details pane displays further information
about the check.

You can see:

• The immediate cause of the check. For instance:

• You dereference a function pointer that has the value NULL or points to an invalid member
function.

The member function is invalid if its argument or return type does not match the pointer
argument or return type.

• You call a pure virtual member function of a class from the class constructor or destructor.
• You call a member function using an incorrect this pointer.

To see why the this pointer can be incorrect, see Incorrect object oriented
programming.

• The probable root cause of the check, if indicated.

Step 2: Determine Root Cause of Check
If you cannot determine the root cause based on the check information, use navigation shortcuts in
the user interface to navigate to the root cause.

Based on the specific error, use one of the following methods to find the root cause.

Error How to Find Root Cause
You dereference a function
pointer that has the value
NULL.

Right-click the function pointer and select Search For All References.
Find the instance where you assign NULL to the function pointer.

 Review and Fix Incorrect Object Oriented Programming Checks

4-23

Error How to Find Root Cause
You dereference a function
pointer that points to an
invalid member function.

Compare the argument and return types of the function pointer and the
member function that it points to.

1 Right-click the function pointer on the Source pane and select
Search For All References. Find the instances where you:

• Define the function pointer.
• Assign the address of a member function to the function pointer.

2 Find the member function definition. Right-click the member
function name on the Source pane and select Go To Definition.

You call a pure virtual
member function from a
constructor or destructor.

Find the member function declaration and determine whether you
intended to declare it as virtual or pure virtual. Alternatively,
determine if you can replace the call to the pure virtual function with
another operation, for instance, a call to a different member function.

1 Right-click the function name on the Source pane and select
Search for function_name in All Source Files.

2 Find the function declaration from the search results.

A pure virtual function has a declaration such as:

virtual void func() = 0;

You call a member function
using an incorrect this
pointer.

Determine why the this pointer is incorrect.

For instance, if a red Incorrect object oriented programming check
appears on a function call ptr->func() and the message indicates that
the this pointer is incorrect, trace the data flow for ptr.

• Right-click the function pointer on the Source pane and select
Search For All References.

• Browse through all write operations on the pointer. Look for the
following issues:

• Cast between pointers of unrelated types.
• Pointer arithmetic that takes a pointer outside its allowed buffer,

for instance, the bounds of an array.

If a red Incorrect object oriented programming check appears on a
function call obj.func(), trace the data flow for obj. See if obj is not
initialized previously.

4 Reviewing Checks

4-24

Review and Fix Invalid C++ Specific Operations Checks
Follow one or more of these steps until you determine a fix for the Invalid C++ specific operations
check. There are multiple ways to fix a red or orange check. For a description of the check and code
examples, see Invalid C++ specific operations.

Sometimes, especially for an orange check, you can determine that the check does not represent a
real error but a Polyspace assumption that is not true for your code. If you can use an analysis option
to relax the assumption, rerun the verification using that option. Otherwise, you can add a comment
and justification in your result or code.

For the general workflow that applies to all checks, see “Interpret Polyspace Code Prover Access
Results” on page 1-2.

Step 1: Interpret Check Information
On the Results List pane, select the check. The Result Details pane displays further information
about the check.

You can see:

• The immediate cause of the check. For instance:

• The size of an array is not strictly positive.

For instance, you create an array using the statement arr = new char [num]. num is
possibly zero or negative.

Possible fix: Use num as an array size only if it is positive.
• The typeid operator dereferences a possibly NULL pointer.

Possible fix: Before using the typeid operator on a pointer, test the pointer for NULL.
• The dynamic_cast operator performs an invalid cast.

Possible fix: The invalid cast results in a NULL return value for pointers and the
std::bad_cast exception for references. Try to avoid the invalid cast. Otherwise, if the
invalid cast is on pointers, make sure that you test the return value of dynamic_cast for NULL
before dereference. If the invalid cast is on references, make sure that you catch the
std::bad_cast exception in a try-catch statement.

• The probable root cause of the check, if indicated.

Step 2: Determine Root Cause of Check
If you cannot determine the root cause based on the check information, use navigation shortcuts in
the user interface to navigate to the root cause.

Based on the nature of the error, use one of the following methods to find the root cause.

 Review and Fix Invalid C++ Specific Operations Checks

4-25

Error How to Find Root Cause
An array size is
nonpositive.

1 Trace the data flow for the size variable.

Follow the same root cause investigation steps as for a Division by
Zero check. See “Review and Fix Division by Zero Checks” on page 4-
7.

2 Identify a point where you can constrain the array size variable to
positive values.

The typeid operator
dereferences a possibly
NULL pointer.

1 Trace the data flow for the pointer variable.

Follow the same root cause investigation steps as for an Illegally
dereferenced pointer check. See “Review and Fix Illegally
Dereferenced Pointer Checks” on page 4-17.

2 Identify a point where you can test the pointer for NULL.
The dynamic_cast
operator performs an
invalid cast.

Navigate to the definitions of the classes involved. Determine the
inheritance relationship between the classes.

1 On the Source pane in the Polyspace user interface, right-click the
class name.

2 Select Go To Definition.

Step 3: Trace Check to Polyspace Assumption
See if you can trace the orange check to a Polyspace assumption that occurs earlier in the code. If the
assumption does not hold true in your case, add a comment or justification in your result or code. See
“Address Polyspace Results Through Bug Fixes or Justifications” on page 2-2.

For instance, you obtain the array size variable from a stubbed function getSize. Then:

1 Polyspace assumes that the return value of getSize is full-range. The range includes nonpositive
values.

2 Using the variable as array size in dynamic memory allocation causes orange Invalid C++
specific operations.

3 If you know that the variable takes a positive value, add a comment and justification explaining
why you did not change your code.

For more information, see “Code Prover Analysis Assumptions”.

Note Before justifying an orange check, consider carefully whether you can improve your coding
design.

4 Reviewing Checks

4-26

Review and Fix Invalid Shift Operations Checks
Follow one or more of these steps until you determine a fix for the Invalid shift operations check.
There are multiple ways to fix the check. For a description of the check and code examples, see
Invalid shift operations.

Sometimes, especially for an orange check, you can determine that the check does not represent a
real error but a Polyspace assumption that is not true for your code. If you can use an analysis option
to relax the assumption, rerun the verification using that option. Otherwise, you can add a comment
and justification in your result or code.

For the general workflow that applies to all checks, see “Interpret Polyspace Code Prover Access
Results” on page 1-2.

Step 1: Interpret Check Information
Select the red or orange Invalid shift operations check. Obtain the following information from the
Result Details pane:

• The reason for the check being red or orange. Possible reasons:

• The shift amount can be outside allowed bounds.

The software also states the allowed range for the shift amount.
• Left operand of left shift can be negative.

In the example below, a red error occurs because the shift amount is outside allowed bounds. The
allowed range for the shift amount is 0 to 31.

Possible fix: To avoid the red or orange check, perform the shift operation only if the shift amount
is within bounds.

if(shiftAmount < (sizeof(int) * 8))
 /* Perform the shift */
else
 /* Error handling */

• Probable root cause for the check, if the software provides this information.

 Review and Fix Invalid Shift Operations Checks

4-27

In the preceding example, the software identifies a stubbed function, getVal as probable cause.

Possible fix: To avoid the orange check, constrain the return value of getVal. For instance, specify
that getVal returns values in a certain range, for example, 0..10. For more information, see
“Stubbed Functions” on page 6-7.

Step 2: Determine Root Cause of Check
• If the shift amount is outside bounds, trace the data flow for the shift variable. Identify a suitable

point where you can constrain the shift variable.

In the following example, trace the data flow for shiftAmount.

void func(int val) {
 int shiftAmount = getShiftAmount();
 int res = val >> shiftAmount;
}

You might find that getShiftAmount returns full-range of values.

Possible fix:

• Perform the shift operation only if shiftAmount is between 0 and (sizeof(int))*8 - 1.
• Constrain the return value of getShiftAmount, in the body of getShiftAmount or through

the Polyspace Constraint Specification interface, if you do not have the definition of
getShiftAmount. For more information, see “Stubbed Functions” on page 6-7.

• If the left operand of a left shift operation can be negative, trace the data flow for the left operand
variable. Identify a suitable point where you can constrain the left operand variable.

In the following example, trace the data flow for shiftAmount.

void func(int shiftAmount) {
 int val = getVal();
 int res = val << shiftAmount;
}

You might find that getVal returns full-range of values.

Possible fix:

• Perform the shift operation only if val is positive.
• Constrain the return value of getVal, in the body of getVal or through the Polyspace

Constraint Specification interface, if you do not have the definition of getVal. For more
information, see “Stubbed Functions” on page 6-7.

• If you want Polyspace to allow the operation, use the analysis option Allow negative operand
for left shifts. See Allow negative operand for left shifts (-allow-negative-
operand-in-shift). For more information on analysis options, see the documentation for
Polyspace Code Prover or Polyspace Code Prover Server.

To trace the data flow, select the check and note the information on the Result Details pane.

• If the Result Details pane shows the sequence of instructions that lead to the check, select each
instruction.

4 Reviewing Checks

4-28

• If the Result Details pane shows the line number of probable cause for the check, right-click on
the Source pane. Select Go To Line.

• Otherwise:

1 Find the previous write operation on the variable you want to trace.
2 At the previous write operation, identify a new variable to trace back.

Place your cursor on the variables involved in the write operation to see their values. The
values help you decide which variable to trace.

3 Find the previous write operation on the new variable. Continue tracing back in this way until
you identify a point to specify your constraint.

Depending on the variable, use the following navigation shortcuts to find previous instances. You
can perform the following steps in the Polyspace user interface only.

Variable How to Find Previous Instances of Variable
Local Variable Use one of the following methods:

• Search for the variable.

1 Right-click the variable. Select Search For All
References.

All instances of the variable appear on the Search pane
with the current instance highlighted.

2 On the Search pane, select the previous instances.
• Browse the source code.

1 Double-click the variable on the Source pane.

All instances of the variable are highlighted.
2 Scroll up to find the previous instances.

Global Variable

Right-click the variable. If
the option Show In
Variable Access View
appears, the variable is a
global variable.

1 Select the option Show In Variable Access View.

On the Variable Access pane, the current instance of the
variable is shown.

2 On this pane, select the previous instances of the variable.

Write operations on the variable are indicated with and
read operations with .

Function return value

ret=func();

1 Find the function definition.

Right-click func on the Source pane. Select Go To
Definition, if the option exists. If the definition is not
available to Polyspace, selecting the option takes you to the
function declaration.

2 In the definition of func, identify each return statement.
The variable that the function returns is your new variable
to trace back.

 Review and Fix Invalid Shift Operations Checks

4-29

You can also determine if variables in any operation are related from some previous operation. See
“Find Relations Between Variables in Code” on page 4-74.

Step 3: Look for Common Causes of Check
Look for common causes of the Invalid Shift Operations check.

• See if you have specified the right target processor type. The target processor type determines the
number of bits allowed for a certain variable type.

To determine the number of bits allowed:

1 Navigate to the variable definition. Note the variable type.

Right-click the variable and select Go To Definition, if the option exists.
2 See the number of bits allowed for the type.

In the configuration used for your results, select the Target & Compiler node. Click the Edit
button next to the Target processor type list.

• For left shifts with a negative operand, see if you intended to perform a right shift instead.

Step 4: Trace Check to Polyspace Assumption
See if you can trace the orange check to a Polyspace assumption that occurs earlier in the code. If the
assumption does not hold true in your case, add a comment or justification in your result or code. See
“Address Polyspace Results Through Bug Fixes or Justifications” on page 2-2.

For instance, you obtain a variable from an undefined function and perform a left shift on it. Then:

1 Polyspace assumes that the function can return a negative value.
2 The left shift operation can occur on a negative value and therefore there is an orange check on

the operation.
3 If you know that the function returns a positive value, add a comment and justification describing

why you did not change your code.

For more information, see “Code Prover Analysis Assumptions”.

4 Reviewing Checks

4-30

Review and Fix Invalid Use of Standard Library Routine Checks
Follow one or more of these steps until you determine a fix for the Invalid use of standard library
routine check. For a description of the check and code examples, see Invalid use of standard
library routine.

Sometimes, especially for an orange check, you can determine that the check does not represent a
real error but a Polyspace assumption that is not true for your code. If you can use an analysis option
to relax the assumption, rerun the verification using that option. Otherwise, you can add a comment
and justification in your result or code.

For the general workflow that applies to all checks, see “Interpret Polyspace Code Prover Access
Results” on page 1-2.

Step 1: Interpret Check Information
Select the check on the Results List pane. View further information about the check on the Result
Details pane. The check is red or orange because of invalid function arguments.

The cause of a red or orange check depends on the standard library function that you use. The
following table shows the possible causes for some of the commonly used functions.

Function Cause of Red or Orange Check
islower, isdigit, and other
character-handling functions in
ctype.h

The value of the argument can be outside the range allowed for
an unsigned char variable.

Note that you can use the macro EOF as argument.
Functions in math.h The software checks for multiple kinds of errors in sequence. The

software performs each check only for those execution paths
where the previous check passes.

Some examples are given below. For more information and a list
of functions, see “Invalid Use of Standard Library Floating Point
Routines” on page 4-33.
sqrt The value of the argument can

be negative.
pow The first argument can be

negative while the second
argument is a non-integer.

exp, exp2, or the hyperbolic
functions

The argument can be so large
that the result exceeds the value
allowed for a double.

log The argument can be zero or
negative.

 Review and Fix Invalid Use of Standard Library Routine Checks

4-31

Function Cause of Red or Orange Check
asin or acos The argument can be outside

the range [-1,1].
tan The argument can have the

value HALF_PI.
acosh The argument can be less than

1.
atanh The argument can be greater

than 1 or less than -1.
fprintf, fscanf, and other
file handling functions

The file pointer argument can be non-readable. For example, it
can be NULL.

Functions that take string
arguments

The string argument can be an invalid string. For example, it does
not end with a terminating '\0'.

memmove or memcpy The third argument of this function specifies the number of bytes
to copy from the second to the first argument. This number can
exceed the memory allocated to the first or second argument.

Step 2: Trace Check to Polyspace Assumption
See if you can trace the orange check to a Polyspace assumption that occurs earlier in the code. If the
assumption does not hold true in your case, add a comment or justification in your result or code. See
“Address Polyspace Results Through Bug Fixes or Justifications” on page 2-2.

For instance, you obtain a value from an undefined function and perform the sqrt operation on it.
Then:

1 Polyspace assumes that the function can return a negative value.
2 Therefore, the software produces an orange Invalid Use of Standard Library Routine check

on the sqrt function call.
3 If you know that the function returns a positive value, to avoid the orange, you can specify a

constraint on the return value of your function. See “Stubbed Functions” on page 6-7.
Alternately, add a comment and justification describing why you did not change your code.

For more information, see “Code Prover Analysis Assumptions”.

4 Reviewing Checks

4-32

Invalid Use of Standard Library Floating Point Routines
Polyspace Code Prover performs the Invalid Use of Standard Library Routine check on standard
library routines to determine if their arguments are valid. The check works differently for memory
routines, floating-point routines or string routines because their arguments can be invalid in different
ways. This topic describes how the check works for standard library floating-point routines.

For more information on the check, see Invalid use of standard library routine.

What the Check Looks For
The Invalid Use of Standard Library Routine check sequentially looks for the following issues in
use of floating-point routines.

• Domain error: A domain error occurs if the arguments of the function are invalid. The definition of
invalid argument varies based on whether you allow non-finite floats or not. If you allow non-finite
floats but:

• Specify that you must be warned about NaN results, a domain error occurs if the function
returns NaN and the arguments themselves are not NaN.

• Specify that NaN results must be forbidden, a domain error occurs if the function returns NaN
or the arguments themselves are NaN.

For details, see NaNs (-check-nan).

The check works in almost the same way as the check Invalid operation on floats. The
Invalid Use of Standard Library Routine check works on standard library functions while the
Invalid Operation on Floats check works on numerical operations involving floating-point
variables.

• Overflow error: An overflow error occurs if the result of the function overflows. The definition of
overflow varies based on whether you allow non-finite floats and based on the rounding modes you
specify. If you allow non-finite floats but specify that you must be warned about infinite results, an
overflow error occurs if the function returns infinity and the arguments themselves are not infinity.
For details, see Infinities (-check-infinite).

The check works in the same way as the check Overflow. The Invalid Use of Standard Library
Routine check works on standard library functions while the Overflow check works on numerical
operations involving floating-point variables.

• Invalid pointer argument: For functions such as frexp that take pointer arguments, the
verification checks if it is valid to dereference the pointer. For instance, the pointer is not NULL or
does not point outside allowed bounds.

For more information on analysis options, see the documentation for Polyspace Code Prover or
Polyspace Code Prover Server.

The check looks for these errors in sequence.

• If the check finds a definite domain error, it does not look for the overflow error.
• If the check finds a possible domain error, it looks for the overflow error only for the execution

paths where the domain error does not occur.

The check for each error itself can consist of multiple conditions, which are also checked in sequence.
Each check is performed only for those execution paths where the previous check passes.

 Invalid Use of Standard Library Floating Point Routines

4-33

Single-Argument Functions Checked
The Invalid Use of Standard Library Routine check covers the following routines, their single-
precision versions with suffix f (if they have one) and their long double versions with suffix l. The
check works in exactly the same way for C and C++ code.

• acos
• acosh
• asin
• asinh
• atan
• atanh
• ceil
• cos
• cosh
• exp
• exp2
• expm1
• fabs
• floor
• log
• log10
• log1p
• logb
• round
• sin
• sinh
• sqrt
• tan
• tanh
• trunc
• cbrt

Functions with Multiple Arguments
The Invalid Use of Standard Library Routine check covers the following routines, their single-
precision versions with suffix f (if they have one) and their long double versions with suffix l. The
check works in exactly the same way for C and C++ code.

• atan2
• fdim
• fma

4 Reviewing Checks

4-34

• fmax
• fmin
• fmod
• frexp
• hypot
• ilogb
• ldexp
• modf
• nextafter
• nexttoward
• pow
• remainder

See Also

 Invalid Use of Standard Library Floating Point Routines

4-35

Review and Fix Non-initialized Local Variable Checks
Follow one or more of these steps until you determine a fix for the Non-initialized local variable
check. There are multiple ways to fix this check. For a description of the check and code examples,
see Non-initialized local variable.

Sometimes, especially for an orange check, you can determine that the check does not represent a
real error but a Polyspace assumption that is not true for your code. If you can use an analysis option
to relax the assumption, rerun the verification using that option. Otherwise, you can add a comment
and justification in your result or code.

For the general workflow that applies to all checks, see “Interpret Polyspace Code Prover Access
Results” on page 1-2.

Step 1: Interpret Check Information
Place your cursor on the variable on which the Non-initialized local variable error appears.

Obtain the probable root cause for the variable being non-initialized, if indicated in the tooltip.

In the preceding example, the software identifies a stubbed function, initialize, as probable
cause.

Possible fix: To avoid the check, you can specify that initialize writes to its arguments. For more
information, see “Stubbed Functions” on page 6-7.

Step 2: Determine Root Cause of Check
You can perform the following steps in the Polyspace user interface only.

1 Search for the variable definition. See if you initialize the variable when you define it.

Right-click the variable and select Go To Definition, if the option exists.
2 If you do not want to initialize the variable during definition, browse through all instances of the

variable. Determine if you initialize the variable in any of those instances.

Do one of the following:

• On the Source pane, double-click the variable.

Previous instances of the variable are highlighted. Scroll up to find them.
• On the Source pane, right-click the variable. Select Search For All References.

Select the previous instances on the Search pane.

4 Reviewing Checks

4-36

Possible fix: If you do not initialize the variable, identify an instance where you can initialize it.
3 If you find an instance where you initialize the variable, determine if you perform the

initialization in the scope where the Non-initialized local variable error appears.

For instance, you initialize the variable only in some branches of an if ... elseif ... else
statement. If you use the variable outside the statement, the variable can be non-initialized.

Possible fix:

• Perform the initialization in the same scope where you use it.

In the preceding example, perform the initialization outside the if ... elseif ... else
statement.

• Perform the initialization in a block with smaller scope but make sure that the block always
executes.

In the preceding example, perform the initialization in all branches of the if ...
elseif ... else statement. Make sure that one branch of the statement always executes.

Step 3: Look for Common Causes of Check
Look for common causes of the Non-initialized local variable check.

• See if you pass the variable to another function by reference or pointers before using it.
Determine if you initialize the variable in the function body.

To navigate to the function body, right-click the function and select Go To Definition, if the option
exists.

• Determine if you initialize the variable in code that is not reachable.

For instance, you initialize the variable in code that follows a break or return statement.

Possible fix: Investigate the unreachable code. For more information, see “Review and Fix
Unreachable Code Checks” on page 4-67.

• Determine if you initialize the variable in code that can be bypassed during execution.

For instance, you initialize the variable in a loop inside a function. However, for certain function
arguments, the loop does not execute.

Possible fix:

• Initialize the variable during declaration.
• Investigate when the code can be bypassed. Determine if you can avoid bypassing of the code.

• If the variable is an array, determine if you initialize all elements of the array.
• If the variable is a structured variable, determine if you initialize all fields of the structure.

If you do not initialize a certain field of the structure, see if the field is unused.

Possible fix: Initialize a field of the structure if you use the field in your code.

 Review and Fix Non-initialized Local Variable Checks

4-37

Step 4: Trace Check to Polyspace Assumption
See if you can trace the orange check to a Polyspace assumption that occurs earlier in the code. If the
assumption does not hold true in your case, add a comment or justification in your result or code. See
“Address Polyspace Results Through Bug Fixes or Justifications” on page 2-2.

For instance, you pass a variable to a function by pointer or reference. You intend to initialize the
variable in the function body, but you do not provide the function body during verification. Then:

• Polyspace assumes that the function might not initialize the variable.
• If you use the variable following the function call, Polyspace considers that the variable can be

non-initialized. It produces an orange Non-initialized local variable check on the variable.

For more information, see “Code Prover Analysis Assumptions”.

Note Before justifying an orange check, consider carefully whether you can improve your coding
design.

Disabling This Check

You can disable this check. If you disable this check, Polyspace assumes that at declaration, variables
have full-range of values allowed by their type. For more information, see Disable checks for
non-initialization (-disable-initialization-checks). For more information on analysis
options, see the documentation for Polyspace Code Prover or Polyspace Code Prover Server.

4 Reviewing Checks

4-38

Review and Fix Non-initialized Pointer Checks
Follow one or more of these steps until you determine a fix for the Non-initialized pointer check.
There are multiple ways to fix this check. For a description of the check and code examples, see Non-
initialized pointer.

Sometimes, especially for an orange check, you can determine that the check does not represent a
real error but a Polyspace assumption that is not true for your code. If you can use an analysis option
to relax the assumption, rerun the verification using that option. Otherwise, you can add a comment
and justification in your result or code.

For the general workflow that applies to all checks, see “Interpret Polyspace Code Prover Access
Results” on page 1-2.

Step 1: Interpret Check Information
Select the check on the Results List pane. On the Result Details pane, obtain further information
about the check.

Step 2: Determine Root Cause of Check
Right-click the pointer variable and select Go To Definition. Initialize the variable when you define
it. If you do not want to initialize during definition, identify a suitable point to initialize the variable
before you read it.

For orange checks, determine why the pointer is non-initialized on certain execution paths.

1 Find previous instances where write operations are performed on the pointer.
2 For each write operation, determine if the operation occurs:

• Before the read operation containing the orange Non-initialized pointer check.

Possible fix: If the write operation occurs after the read operation, see if you intended to
perform the operations in reverse order.

• In an unreachable code block.

Possible fix: Investigate why the code block is unreachable. See “Review and Fix Unreachable
Code Checks” on page 4-67.

• In a code block that is not reached on certain execution paths. For example, the operation
occurs in an if block in a function. The if block is not entered for certain function inputs.

Possible fix: Perform a write operation on all the execution paths. In the preceding example,
perform the write operation in all branches of the if ... elseif ... else statement.

 Review and Fix Non-initialized Pointer Checks

4-39

Depending on the nature of the variable, use the appropriate method to find previous operations on
the variable. You can perform the following steps in the Polyspace user interface only.

Variable How to Find Previous Operations on Variable
Local Variable Use one of the following methods:

• Search for the variable.

1 Right-click the variable. Select Search For All References.

All instances of the variable appear on the Search pane with
the current instance highlighted.

2 On the Search pane, select the previous instances.
• Browse the source code.

1 On the Source pane, double-click the variable.

All instances of the variable are highlighted.
2 Scroll up to find the previous instances.

Global Variable

Right-click the variable. If the
option Show In Variable
Access View appears, the
variable is a global variable.

1 Select the option Show In Variable Access View.

The current instance of the variable is shown on the Variable
Access pane.

2 On this pane, select the previous instances of the variable.

Write operations on the variable are indicated with . Read
operations are indicated with .

Step 3: Trace Check to Polyspace Assumption
See if you can trace the orange check to a Polyspace assumption that occurs earlier in the code. If the
assumption does not hold true in your case, add a comment or justification in your result or code. See
“Address Polyspace Results Through Bug Fixes or Justifications” on page 2-2.

Disabling This Check

You can disable the check in two ways:

• You can disable the check only for non-local pointers. Polyspace considers global pointer variables
to be initialized to NULL according to ANSI® C standards. For more information, see Ignore
default initialization of global variables (-no-def-init-glob).

• You can disable the check completely along with other initialization checks. If you disable this
check, Polyspace assumes that at declaration, pointers can be NULL or point to memory blocks at
an unknown offset. For more information, see Disable checks for non-initialization (-
disable-initialization-checks).

For more information on analysis options, see the documentation for Polyspace Code Prover or
Polyspace Code Prover Server.

4 Reviewing Checks

4-40

Review and Fix Non-initialized Variable Checks
Follow one or more of these steps until you determine a fix for the Non-initialized variable check.
There are multiple ways to fix this check. For a description of the check and code examples, see Non-
initialized variable.

Sometimes, especially for an orange check, you can determine that the check does not represent a
real error but a Polyspace assumption that is not true for your code. If you can use an analysis option
to relax the assumption, rerun the verification using that option. Otherwise, you can add a comment
and justification in your result or code.

For the general workflow that applies to all checks, see “Interpret Polyspace Code Prover Access
Results” on page 1-2.

Step 1: Interpret Check Information
On the Results List pane, select the check. On the Result Details pane, obtain further information
about the check.

Obtain the following information:

• Probable cause of check, if described on the Result Details pane.

In the preceding example, there is an orange Non-initialized variable check on the global
variable globVar.

The software detects that the check is potentially a path-related issue. Therefore, the global
variable can be non-initialized only on certain execution paths. For example, you initialized the
global variable in an if block, but did not initialize it in the corresponding else block.

Possible fix: Determine along which paths the global variables can be non-initialized.
• Value of global variable, if initialized.

In the preceding example, when initialized, the global variable globVar has value 0.

Step 2: Determine Root Cause of Check
You can perform the following steps in the Polyspace user interface only.

Right-click the variable and select Go To Definition. Initialize the variable when you define it. If you
do not want to initialize during definition, identify a suitable point to initialize the variable before you
read it.

If the check is orange, determine why the variable is non-initialized on certain execution paths.

1 Right-click the variable. Select Show In Variable Access View.

 Review and Fix Non-initialized Variable Checks

4-41

2 On the Variable Access pane, select each write operation on the variable.

Write operations are indicated with and read operations with .
3 Determine if the write operation occurs:

• Before the read operation containing the orange Non-initialized variable check.

Possible fix: If the write operation occurs after the read operation, see if you intended to
perform the operations in reverse order.

• In an unreachable code block.

Possible fix: Investigate why the code block is unreachable. See “Review and Fix Unreachable
Code Checks” on page 4-67.

• In a code block that is not reached on certain execution paths. For example, the operation
occurs in an if block in a function. The if block is not entered for certain function inputs.

Possible fix: Perform a write operation on all the execution paths. In the preceding example,
perform the write operation in all branches of the if ... elseif ... else statement.

Step 3: Trace Check to Polyspace Assumption
See if you can trace the orange check to a Polyspace assumption that occurs earlier in the code. If the
assumption does not hold true in your case, add a comment or justification in your result or code. See
“Address Polyspace Results Through Bug Fixes or Justifications” on page 2-2.

Disabling This Check

You can disable this check in two ways:

• You can specify that global variables must be considered as initialized. Polyspace considers global
variables to be initialized according to ANSI C standards. The default values are:

• 0 for int
• 0 for char
• 0.0 for float

For more information, see Ignore default initialization of global variables (-no-
def-init-glob).

• You can disable the check along with other initialization checks. If you disable this check,
Polyspace assumes that at declaration, variables have the full range of values allowed by their
type. For more information, see Disable checks for non-initialization (-disable-
initialization-checks).

For more information on analysis options, see the documentation for Polyspace Code Prover or
Polyspace Code Prover Server.

4 Reviewing Checks

4-42

Review and Fix Non-Terminating Call Checks
Follow one or more of these steps until you determine a fix for the Non-terminating call check.
There are multiple ways to fix the check. For a description of the check and code examples, see Non-
terminating call.

For the general workflow on reviewing checks, see “Interpret Polyspace Code Prover Access Results”
on page 1-2.

A red Non-terminating call check on a function call indicates one of the following:

• An operation in the function body failed for that particular call. Because there are other calls to
the same function that do not cause a failure, the operation failure typically appears as an orange
check in the function body.

• The function does not return to its calling context for other reasons. For example, a loop in the
function body does not terminate.

Step 1: Determine Root Cause of Check
Determine the root cause of the check in the function body. You can perform the following steps in the
Polyspace user interface only.

1 Navigate to the function definition.

Right-click the function call containing the red check. Select Go To Definition, if the option
exists.

2 In the function body, determine if there is a loop where the termination condition is never
satisfied.

Possible fix: Change your code or the function arguments so that the termination condition is
satisfied.

3 Otherwise, in the function body, identify which orange check caused the red Non-terminating
call check on the function call.

If you cannot find the orange check by inspection, rerun verification using the analysis option
Sensitivity context. Provide the function name as option argument. The software marks the
orange check causing the red Non-terminating call check as a dark orange check.

For more information, see Sensitivity context (-context-sensitivity). For more
information on analysis options, see the documentation for Polyspace Code Prover or Polyspace
Code Prover Server.

For a tutorial on using the option, see “Identify Function Call with Run-Time Error” on page 4-
45.

Possible fix: Investigate the cause of the orange check. Change your code or the function
arguments to avoid the orange check.

Step 2: Look for Common Causes of Check
To trace a Non-terminating call check on a function call to an orange check in the function body, try
the following:

 Review and Fix Non-Terminating Call Checks

4-43

• If the function call contains arguments, in the function body, search for all instances of the
function parameters. See if you can find an orange check related to the parameters. Because other
calls to the same function do not cause an operation failure, it is likely that the failure is related to
the function parameter values in the red call.

In the following example, in the body of func, search for all instances of arg1 and arg2. Right-
click the variable name and select Search For All References.

void func(int arg1, double arg2) {
 .
 .
}

void main() {
 int valInt1,valInt2;
 double valDouble1, valDouble2;
 .
 .
 func(valInt1, valDouble1);
 func(valInt2, valDouble2);
}

Because valInt1 and valDouble1 do not cause an operation failure in func, the failure might
be due to valInt2 or valDouble2. Because valInt2 and valDouble2 are copied to arg1 and
arg2, the orange check must occur in an operation related to arg1 or arg2.

• If the function call does not contain arguments, identify what is different between various calls to
the function. See if you can relate the source of this difference to an orange check in the function
body.

For instance, if the function reads a global variable, different calls to the function can operate on
different values of the global variable. Determine if the function body contains an orange check
related to the global variable.

4 Reviewing Checks

4-44

Identify Function Call with Run-Time Error
This tutorial shows how to identify the function call that causes a run-time error in the function body.

If a function contains two different colors on the same operation for two different calls, the software
combines the call contexts and displays an orange check on the operation. For example, when some
function calls cause a red or orange check on an operation in the function body and other calls cause
a green check, in your verification results, the operation is orange.

You have to distinguish orange checks that arise from combination of call contexts because an orange
check can arise from other causes. Using the option Sensitivity context (-context-
sensitivity), make this distinction by storing individual call contexts for a function. For more
information on analysis options, see the documentation for Polyspace Code Prover or Polyspace Code
Prover Server.

In this tutorial, a function is called twice. You identify which function call causes a run-time error in
the function body.

1 Run analysis on this code and open the results.

void func(int arg) {
 int loc_var = 0;
 loc_var = 1/arg;
}

void main(void) {
 int num = 1;
 func(num + 10);
 func(num - 1);
}

A red Non-terminating call check appears on the second call to func. In the body of func,
there is an orange Division by zero check on the / operation.

2 Specify that you want to store individual call context information for the function func.

a In your project configuration, select the Precision node.
b Select custom for Sensitivity context.
c

Click to add a new field. Enter func.
3 Run verification and open the results.

An orange Division by zero check still appears in the body of func. However, this orange check
is marked on the Results List pane as a dark orange check and is denoted by a mark. Instead
of a red Non-terminating call check, a dashed, red line appears on the second call to func.

4 Select the orange check.

The Result Details pane shows the call contexts for the check. You can see that one call
produces a red check on the / operation and the other call produces a green check. You can click
each call to navigate to it in your source code.

 Identify Function Call with Run-Time Error

4-45

See Also
Non-terminating call

Related Examples
• “Review and Fix Non-Terminating Call Checks” on page 4-43

More About
• “Orange Checks in Code Prover” on page 1-54

4 Reviewing Checks

4-46

Review and Fix Non-Terminating Loop Checks
Follow one or more of these steps until you determine a fix for the Non-terminating loop check.
There are multiple ways to fix the check. For a description of the check and code examples, see Non-
terminating loop.

For the general workflow on reviewing checks, see “Interpret Polyspace Code Prover Access Results”
on page 1-2.

Step 1: Interpret Check Information
Place your cursor on the loop keyword such as for or while.

Obtain the following information from the tooltip:

• Whether the loop is infinite or contains a run-time error.

In the following example, it is likely that the loop is infinite.

• If the loop contains a run-time error, the number of loop iterations. Because Polyspace considers
that execution stops when a run-time error occurs, from this number, you can determine which
loop iteration contains the error.

In the following example, it is likely that the loop contains a run-time error. The error is likely to
occur on the 31st loop iteration.

Step 2: Determine Root Cause of Check
• If the loop is infinite, determine why the loop-termination condition is never satisfied.

If you deliberately have an infinite loop in your code, such as for cyclic applications, you can add a
comment and justification in your result or code. See “Address Polyspace Results Through Bug
Fixes or Justifications” on page 2-2.

• If the loop contains a run-time error, identify the error that causes the Non-terminating loop
check. Fix the error.

In the loop body, the run-time error typically occurs as an orange check of another type on an
operation. The check is orange and not red because the operation typically passes the check in the
first few loop iterations and fails only in a later iteration. However, because the failure occurs
every time the loop runs, the Non-terminating loop check on the loop keyword is red.

For loops with few iterations, you can navigate directly from the loop keyword to the operation
causing the run-time error.

 Review and Fix Non-Terminating Loop Checks

4-47

• To find the source of error, on the Source pane, select the red loop keyword. The Result
Details pane shows the full history leading to the operation that causes the run-time error.

• Navigate to the source of error in the loop body. Right-click the loop keyword and select Go to
Cause if the option exists.

For a tutorial, see “Identify Loop Operation with Run-Time Error” on page 4-50.

Step 3: Look for Common Causes of Check
• If the loop is infinite:

• Check your loop-termination condition.
• Inside the loop body, see if you change at least one of the variables involved in the loop-

termination condition.

For instance, if the loop-termination condition is while (count1 + count2 < count3), see
if you are changing at least one of count1, count2, or count3 in the loop.

• If you are changing the variables involved in the loop-termination condition, see if you are
changing them in the right direction.

For instance, if the loop termination condition is while(i<10) and you decrement i in the
loop, the loop does not terminate. You must increment i.

• If the loop contains a run-time error:

• If the loop control variable is an array index, see if you have an orange Out of bounds array
index error in the loop body.

4 Reviewing Checks

4-48

• If the loop control variable is passed to a function, see if you can relate the red Non-
terminating loop error to an orange error in the function body.

 Review and Fix Non-Terminating Loop Checks

4-49

Identify Loop Operation with Run-Time Error
This tutorial shows how to interpret Polyspace Code Prover results that highlight a run-time error
inside a loop.

If an error occurs in a loop, the error shows in the analysis results as a red Non-terminating loop
check on the loop keyword (for, while, and so on).

for (i = 0; i <= 10; i++)

The operation causing the error shows as an orange check in the loop. To distinguish this orange
check from other orange checks in the loop, navigate directly from the red loop keyword to the
operation responsible for the run-time error.

In this tutorial, a function is called in a loop. The function body contains another loop, which has an
operation causing a run-time error. You trace from the first loop to the operation causing the run-time
error.

1 Run verification on this code and open the results:

int a[100];

int f (int i);

void main() {
 int i,x=0;
 for (i = 0; i <= 10; i++) {
 x += f(i);
 }
}

int f (int i) {
 int j, x;
 x = 0;
 for (j = 0; j <= 10; j++) {
 x += a[10 + (i * j)];
 }
 return x;
}

2 Select the red Non-terminating loop result. The Source pane highlights the for loop in main.
3 Trace from the for loop in main to the operation causing the error. The operation is x+= a[10

+ (i*j)]. An Out of bounds array index error occurs when i is 9 and j is 10. The error
shows in orange on the [operator.

To trace from the red for keyword to the orange array access operation:

• Navigate directly to the operation. Right-click the for keyword and select Go to Cause.
• See the full history from the for keyword to the array access operation. Select the red for

keyword. The Result Details pane shows the history.

4 Reviewing Checks

4-50

You can read the event history in sequence. The outer loop loop runs nine times without error.
On the tenth iteration (i=9), the loop enters the function f. Inside f, the inner loop runs ten
times without error. On the eleventh iteration (j=10), the array access causes an error.

You can use this information to determine how to fix the run-time error on the array access
operation.

Note You can navigate directly to the root cause of an error for loops with only a small number of
iterations.

See Also
Non-terminating loop

Related Examples
• “Review and Fix Non-Terminating Loop Checks” on page 4-47

More About
• “Orange Checks in Code Prover” on page 1-54

 Identify Loop Operation with Run-Time Error

4-51

Review and Fix Null This-pointer Calling Method Checks
In this section...
“Step 1: Interpret Check Information” on page 4-52
“Step 2: Determine Root Cause of Check” on page 4-52

Follow one or more of these steps until you determine a fix for the Null this-pointer calling
method check. For a description of the check and code examples, see Null this-pointer
calling method.

Sometimes, especially for an orange check, you can determine that the check does not represent a
real error but a Polyspace assumption that is not true for your code. If you can use an analysis option
to relax the assumption, rerun the verification using that option. Otherwise, you can add a comment
and justification in your result or code.

For the general workflow that applies to all checks, see “Interpret Polyspace Code Prover Access
Results” on page 1-2.

Step 1: Interpret Check Information
Select the check on the Results List pane. The Result Details pane displays further information
about the check.

You can see:

• The immediate cause of the check.

In this example, the pointer used to call a method addNewClient can be NULL.
• The probable root cause of the check, if indicated.

In this example, the check can be related to a stubbed function returnPointer.

Step 2: Determine Root Cause of Check
Find an execution path where the pointer is either assigned the value NULL or assigned values from
an undefined function or unknown function inputs. In the latter case, the software assumes that the
pointer can be NULL.

Select the check on the Results List pane.

• If the Result Details pane shows the sequence of instructions that lead to the check, select each
instruction and trace back to the root cause.

• If the Result Details pane shows the line number of probable cause for the check, in the
Polyspace user interface, right-click the Source pane. Select Go To Line.

• If the Result Details pane does not lead you to the root cause, using the Source pane in the
Polyspace user interface, find how the pointer used to call the method can be NULL.

4 Reviewing Checks

4-52

1 Right-click the pointer and select Search For All References.
2 Find each previous instance where the pointer is assigned an address.
3 For each instance, on the Source pane, place your cursor on the pointer. The tooltip indicates

whether the pointer can be NULL.

Possible fix: If the pointer can be NULL, place a check for NULL immediately after the
assignment.

if(ptr==NULL)
 /* Error handling*/
else {
 .
 .
 }

4 If the pointer is not NULL, see if the assignment occurs only in a branch of a conditional
statement. Investigate when that branch does not execute.

Possible fix: Assign a valid address to the pointer in all branches of the conditional statement.

 Review and Fix Null This-pointer Calling Method Checks

4-53

Review and Fix Out of Bounds Array Index Checks
Follow one or more of these steps until you determine a fix for the Out of bounds array index
check. There are multiple ways to fix the check. For a description of the check and code examples,
see Out of bounds array index.

Sometimes, especially for an orange check, you can determine that the check does not represent a
real error but a Polyspace assumption that is not true for your code. If you can use an analysis option
to relax the assumption, rerun the verification using that option. Otherwise, you can add a comment
and justification in your result or code.

For the general workflow that applies to all checks, see “Interpret Polyspace Code Prover Access
Results” on page 1-2.

Step 1: Interpret Check Information
Place your cursor on the [symbol.

Obtain the following information from the tooltip:

• Array size. The allowed range for array index is 0 to (array size - 1).
• Actual range for array index

In the preceding example, the array size is 10. Therefore, the allowed range for the array index is 0 to
9. However, the actual range is 0 to 10.

Possible fix: To avoid the out of bounds array index, access the array only if the index is between 0
and (array size - 1).

#define SIZE 100
int arr[SIZE];
.
.
if(i<SIZE)
 val = arr[i]
else
 /*Error handling */

Step 2: Determine Root Cause of Check
If you want to know or change the array size, right-click the array variable and select Go To
Definition, if the option exists. Otherwise, trace the data flow starting from the array index variable.
Identify a point where you can constrain the index variable.

To trace the data flow, select the check, and note the information on the Result Details pane.

4 Reviewing Checks

4-54

• If the Result Details pane shows the sequence of instructions that lead to the check, select each
instruction.

• If the Result Details pane shows the line number of probable cause for the check, right-click on
the Source pane. Select Go To Line.

• Otherwise:

1 Find previous instances of the array index variable.
2 Browse through those instances. Find the instance where you constrain the array index

variable to (array size - 1).

Possible fix: If you do not find an instance where you constrain the index variable, specify a
constraint for the variable. For example:

if(index<SIZE)
 read(array[index]);

3 Determine if the constraint applies to the instance where the Out of bounds array index
error occurs.

For example, you can constrain the index variable in a for loop using for(index=0;
index<SIZE; index++). However, you access the array outside the loop where the
constraint does not apply.

Possible fix: Investigate why the constraint does not apply. See if you have to constrain the
index variable again.

4 If the index variable is obtained from another variable, trace the data flow for the second
variable. Determine if you have constrained that second variable to (array size - 1).

Depending on the variable, use the following navigation shortcuts to find previous instances. You can
perform the following steps in the Polyspace user interface only.

Variable How to Find Previous Instances of Variable
Local Variable Use one of the following methods:

• Search for the variable.

1 Right-click the variable. Select Search For All References.

All instances of the variable appear on the Search pane with
the current instance highlighted.

2 On the Search pane, select the previous instances.
• Browse the source code.

1 Double-click the variable on the Source pane.

All instances of the variable are highlighted.
2 Scroll up to find the previous instances.

 Review and Fix Out of Bounds Array Index Checks

4-55

Variable How to Find Previous Instances of Variable
Global Variable

Right-click the variable. If the
option Show In Variable
Access View appears, the
variable is a global variable.

1 Select the option Show In Variable Access View.

On the Variable Access pane, the current instance of the
variable is shown.

2 On this pane, select the previous instances of the variable.

Write operations on the variable are indicated with and read
operations with .

Function return value

ret=func();

1 Find the function definition.

Right-click func on the Source pane. Select Go To Definition,
if the option exists. If the definition is not available to Polyspace,
selecting the option takes you to the function declaration.

2 In the definition of func, identify each return statement. The
variable that the function returns is your new variable to trace
back.

You can also determine if variables in any operation are related from some previous operation. See
“Find Relations Between Variables in Code” on page 4-74.

Step 3: Look for Common Causes of Check
Look for common causes of the Out of bounds array index check.

• See if you are starting the array index variable from 0.
• In the condition that constrains your array index variable, see if you use <= when you intended to

use <.
• If a check occurs in or immediately after a for or while loop, determine if you have to reduce the

number of runs of the loop.
• If you use the sizeof function to constrain your array, see if you are dividing sizeof(array) by

sizeof(array[0]) to obtain the array size.

sizeof(array) returns the array size in bytes.

Step 4: Trace Check to Polyspace Assumption
See if you can trace the orange check to a Polyspace assumption that occurs earlier in the code. If the
assumption does not hold true in your case, add a comment or justification in your result or code. See
“Address Polyspace Results Through Bug Fixes or Justifications” on page 2-2.

For instance, you constrain the array index using a function whose definition you do not provide.
Then:

1 Polyspace cannot determine that the array index variable is constrained.
2 When you use this variable as array index, an Out of bounds array index error can occur.
3 If you know that the variable is constrained to the array size, add a comment and justification

describing why you did not change your code.

4 Reviewing Checks

4-56

For more information, see “Code Prover Analysis Assumptions”.

Note Before justifying an orange check, consider carefully whether you can improve your coding
design.

For instance, constraining a global variable in one function and using it as array index in a second
function causes vulnerabilities in your code. If a new function is called between the previous two
functions and modifies your global variable, the constraint no longer applies.

 Review and Fix Out of Bounds Array Index Checks

4-57

Review and Fix Overflow Checks
Follow one or more of these steps until you determine a fix for the Overflow check. There are
multiple ways to fix the check. For a description of the check and code examples, see Overflow.

Sometimes, especially for an orange check, you can determine that the check does not represent a
real error but a Polyspace assumption that is not true for your code. If you can use an analysis option
to relax the assumption, rerun the verification using that option. Otherwise, you can add a comment
and justification in your result or code.

For the general workflow that applies to all checks, see “Interpret Polyspace Code Prover Access
Results” on page 1-2.

Step 1: Interpret Check Information
Place your cursor on the operation that overflows.

Obtain the following information from the tooltip:

• The operand variable you can constrain to avoid the overflow.

In the preceding example, the left operand, val, has full range of values.

Possible fix: To avoid the overflow, perform the multiplication only if val is in a certain range.

if(val < INT_MAX/2)
 return(val*2);
else
 /* Alternate action */

• The probable root cause for overflow, if indicated in the tooltip.

In the preceding example, the software identifies a stubbed function, getVal, as probable cause.

Possible fix: To avoid the overflow, constrain the return value of getVal. For instance, specify that
getVal returns values in a certain range, for example, 1..10. For more information, see
“Stubbed Functions” on page 6-7.

Step 2: Determine Root Cause of Check
Trace the data flow starting from the operand variable that you want to constrain. Identify a suitable
point to specify your constraint.

4 Reviewing Checks

4-58

In the following example, trace the data flow starting from tempVal.

val = func();
.
.
tempVal = val;
.
.
tempVal++ ;

In this example, you might find that:

1 tempVal obtains a full-range of values from val.

Possible fix: Assign val to tempVal only if val is less than a certain value.
2 val obtains a full-range of values from func.

Possible fix: Constrain the return value of func, either in the body of func or through the
Polyspace Constraint Specification interface, if func is stubbed. For more information, see
“Stubbed Functions” on page 6-7.

To trace the data flow, select the check and note the information on the Result Details pane.

• If the Result Details pane shows the sequence of instructions that lead to the check, select each
instruction.

• If the Result Details pane shows the line number of probable cause for the check, right-click on
the Source pane. Select Go To Line.

• Otherwise:

1 Find the previous write operation on the operand variable.

Example: The previous write operation on tempVal is tempVal=val.
2 At the previous write operation, identify a new variable to trace back.

Place your cursor on the variables involved in the write operation to see their values. The
values help you decide which variable to trace.

Example: At tempVal=val, you find that val has a full-range of values. Therefore, you trace
val.

3 Find the previous write operation on the new variable. Continue tracing back in this way until
you identify a point to specify your constraint.

Example: The previous write operation on val is val=func(). You can choose to specify your
constraint on the return value of func.

Depending on the variable, use the following navigation shortcuts to find previous instances. You can
perform the following steps in the Polyspace user interface only.

 Review and Fix Overflow Checks

4-59

Variable How to Find Previous Instances of Variable
Local Variable Use one of the following methods:

• Search for the variable.

1 Right-click the variable. Select Search For All References.

All instances of the variable appear on the Search pane with
the current instance highlighted.

2 On the Search pane, select the previous instances.
• Browse the source code.

1 Double-click the variable on the Source pane.

All instances of the variable are highlighted.
2 Scroll up to find the previous instances.

Global Variable

Right-click the variable. If the
option Show In Variable
Access View appears, the
variable is a global variable.

1 Select the option Show In Variable Access View.

On the Variable Access pane, the current instance of the
variable is shown.

2 On this pane, select the previous instances of the variable.

Write operations on the variable are indicated with and read
operations with .

Function return value

ret=func();

1 Find the function definition.

Right-click func on the Source pane. Select Go To Definition,
if the option exists. If the definition is not available to Polyspace,
selecting the option takes you to the function declaration.

2 In the definition of func, identify each return statement. The
variable that the function returns is your new variable to trace
back.

You can also determine if variables in any operation are related from some previous operation. See
“Find Relations Between Variables in Code” on page 4-74.

Tip To distinguish between integer and float overflows, use the Detail column on the Results List
pane. Click the column header so that integer and float overflows are grouped together. If you do not
see the Detail column, right-click any other column header and enable this column.

Step 3: Look for Common Causes of Check
If the operation causing the overflow occurs in a loop or in the body of a recursive function:

• See if you can reduce the number of loop runs or recursions.
• See if you can place an exit condition in the loop or recursive function before the operation
overflows.

4 Reviewing Checks

4-60

Step 4: Trace Check to Polyspace Assumption
See if you can trace the orange check to a Polyspace assumption that occurs earlier in the code. If the
assumption does not hold true in your case, add a comment or justification in your result or code. See
“Address Polyspace Results Through Bug Fixes or Justifications” on page 2-2.

For instance, you are using a volatile variable in your code. Then:

1 Polyspace assumes that the volatile variable is full-range at every step in the code.
2 An operation using that variable can overflow and is therefore orange.
3 If you know that the variable takes a smaller range of values, add a comment and justification in

your code describing why you did not change your code.

For more information, see “Code Prover Analysis Assumptions”.

Note Before justifying an orange check, consider carefully whether you can improve your coding
design.

 Review and Fix Overflow Checks

4-61

Review and Fix Return Value Not Initialized Checks
Follow one or more of these steps until you determine a fix for the Return value not initialized
check. There are multiple ways to fix this check. For a description of the check and code examples,
see Return value not initialized.

Sometimes, especially for an orange check, you can determine that the check does not represent a
real error but a Polyspace assumption that is not true for your code. If you can use an analysis option
to relax the assumption, rerun the verification using that option. Otherwise, you can add a comment
and justification in your result or code.

For the general workflow that applies to all checks, see “Interpret Polyspace Code Prover Access
Results” on page 1-2.

Step 1: Interpret Check Information
Select the check on the Results List pane. On the Result Details pane, view further information
about the check.

View the probable cause of check, if mentioned on the Result Details pane.

In the preceding example, the software identifies a stubbed function, inputRep, as probable cause.

Possible fix: To avoid the check, constrain the argument or return value of inputRep. For instance,
specify that inputRep returns values in a certain range, for example, 1..10. For more information,
see “Stubbed Functions” on page 6-7.

Step 2: Determine Root Cause of Check
Determine the root cause of the check in the function body. You can perform the following steps in the
Polyspace user interface only.

1 Navigate to the function definition.

Right-click the function call containing the check. Select Go To Definition, if the option exists.
2 In the function body, check if a return statement occurs before the closing brace of the function.
3 If a return statement does not exist:

a On the Search pane, search for the word return, or manually scroll through the function
body and look for return statements.

b For each return statement, determine if the statement appears in a scope smaller than
function scope.

For instance, a return statement occurs only in one branch of an if-else statement.

4 Reviewing Checks

4-62

Possible fix: See if you can place the return statement at the end of the function body. For
instance, replace the following code

int func(int ch) {
 switch(ch) {
 case 1: return 1;
 break;
 case 2: return 2;
 break;
 }
}

with

int func(int ch) {
 int temp;
 switch(ch) {
 case 1: temp = 1;
 break;
 case 2: temp = 2;
 break;
 }
 return temp;
}

For information on how to enforce this practice, see Number of Return Statements.

Step 3: Look for Common Causes of Check
Look for common causes of the Return value not initialized check.

• See if the return statements appear in if-else, for or while blocks. Identify conditions when
the function does not enter the block.

For instance, the function might not enter a while block for certain function inputs.

Possible fix:

• See if you can place the return statement at the end of the function body.
• Otherwise, determine how to avoid the condition when the function does not enter the block.

For instance, if a function does not enter a block for certain inputs, see if you must pass
different inputs.

• See if you have code constructs such as goto that interrupt the normal control flow. See if there
are conditions when return statements in your function cannot be reached because of these code
constructs.

Possible fix:

• Avoid goto statements. For information on how to enforce this practice, see Number of Goto
Statements.

• Otherwise, determine how to avoid the condition when return statements in your function
cannot be reached.

 Review and Fix Return Value Not Initialized Checks

4-63

Step 4: Trace Check to Polyspace Assumption
See if you can trace the orange check to a Polyspace assumption that occurs earlier in the code. If the
assumption does not hold true in your case, add a comment or justification in your result or code. See
“Address Polyspace Results Through Bug Fixes or Justifications” on page 2-2.

For instance, you have a return statement in branches of an if-elseif block but you do not have
the final else block. The condition you are testing in the if-elseif blocks involve variables
obtained from an undefined function. Then:

1 Polyspace assumes that for certain values of those variables, none of the if-elseif blocks are
entered.

2 Therefore, it is possible that the return statements are not reached.
3 If you know that those values of the variables do not occur, add a comment and justification

describing why you did not change your code.

For more information, see “Code Prover Analysis Assumptions”.

Disabling This Check

You can disable this check. If you disable this check, Polyspace assumes the following about a
function return value if the function is missing return statements:

• If the return value is a non-pointer variable, it has full-range of values allowed by its type.
• If the return value is a pointer, it can be NULL-valued or point to a memory block at an unknown
offset.

For more information, see Disable checks for non-initialization (-disable-
initialization-checks). For more information on analysis options, see the documentation for
Polyspace Code Prover or Polyspace Code Prover Server.

4 Reviewing Checks

4-64

Review and Fix Uncaught Exception Checks
Follow one or more of these steps until you determine a fix for the Uncaught exception check. For a
description of the check and code examples, see Uncaught exception.

Step 1: Interpret Check Information
Select the check on the Results List pane. On the Result Details pane, view further information
about the check.

The message for a red or orange Uncaught exception check typically states one of these reasons.

Message What This Means
Unhandled exception propagates to main or
entry-point function.

An exception is thrown and not handled in a
catch block. The exception escapes to the main.

Call to typeName throws during "catch"
parameter construction.

Creating the catch parameter invokes a
constructor. The constructor throws an exception.

Throw during destructor or delete. A destructor throws an exception.

Step 2: Determine Root Cause of Check
The most common root cause is that an exception propagates up the function call hierarchy from its
origin to the main function.

In the event traceback associated with the check, you see the origin of the exception and one path up
the function call tree to the main or another entry-point function. Click each event to navigate to the
corresponding point in the source code.

In this example, the exception is thrown in the method initialVector::getValue which is called
from the main in this sequence:

• main
• getValueFromVector
• initialVector::getValue

 Review and Fix Uncaught Exception Checks

4-65

The event list shows these points in the code:

1 The statement that throws an exception.
2 The return from the function where the exception is thrown, in this case, the

initialVector::getValue method.
3 The return from the next function that the exception propagates to, in this case, the

getValueFromVector method.
4 The main function.

Using this event list, you can trace how the exception escapes and place a try-catch block to handle
the exception. For instance, you can place the call:

return vectorPtr->getValue(5)

in a try-catch block. In the catch block, you can catch an exception of type error.

4 Reviewing Checks

4-66

Review and Fix Unreachable Code Checks
Follow one or more of these steps until you determine a fix for the Unreachable code check. There
are multiple ways to fix this check. For a description of the check and code examples, see
Unreachable code.

If you determine that the check represents defensive code, add a comment and justification in your
result or code explaining why you did not change your code. See “Address Polyspace Results Through
Bug Fixes or Justifications” on page 2-2.

Step 1: Interpret Check Information
1 Select the check on the Results List or Source pane.
2 View the message on the Result Details pane.

The message explains why the block of code is unreachable.

3 A code block is usually unreachable when the condition that determines entry into the block is
not satisfied. See why the condition is not satisfied.

a On the Source pane, place your cursor on the variables involved in the condition to
determine their values.

b Using these values, see why the condition is not satisfied.

Note Sometimes, a condition itself is redundant. For example, it is always true or coupled:

• Through an || operator to another condition that is always true.
• Through an && operator to another condition that is always false.

For example, in the following code, the condition x%2==0 is redundant because the first condition
x>0 is always true.

assert(x>0);
if(x>0 || x%2 == 0)

If a condition is redundant, instead of a block of code, the condition itself is marked gray.

Step 2: Determine Root Cause of Check
Trace the data flow for each variable involved in the condition.

In the following example, trace the data flow for arg.

void foo(void) {
 int x=0;
 .
 .

 Review and Fix Unreachable Code Checks

4-67

 bar(x);
 .
 .
}

void bar(int arg) {
 if(arg==0) {
 /*Block 1*/
 }
 else {
 /*Block 2*/
 }
}

You might find that bar is called only from foo. Since the only argument of bar has value 0, the
else branch of if(arg==0) is unreachable.

Possible fix: If you do not intend to call bar elsewhere and know that the values passed to bar will
not change, you can remove the if-else statement in bar and retain only the content of Block 1.

To trace the data flow, select the check and note the information on the Result Details pane.

• If the Result Details pane shows the sequence of instructions that lead to the check, select each
instruction.

• If the Result Details pane shows the line number of probable cause for the check, right-click on
the Source pane. Select Go To Line.

• Otherwise, for each variable involved in the condition, find previous instances and trace back to
the root cause of check. For more information on common root causes, see “Step 3: Look for
Common Causes of Check” on page 4-69.

Depending on the variable, use the following navigation shortcuts to find previous instances. You
can perform the following steps in the Polyspace user interface only.

Variable How to Find Previous Instances of Variable
Local Variable Use one of the following methods:

• Search for the variable.

1 Right-click the variable. Select Search For All
References.

All instances of the variable appear on the Search pane
with the current instance highlighted.

2 On the Search pane, select the previous instances.
• Browse the source code.

1 Double-click the variable on the Source pane.

All instances of the variable are highlighted.
2 Scroll up to find the previous instances.

4 Reviewing Checks

4-68

Variable How to Find Previous Instances of Variable
Global Variable

Right-click the variable. If
the option Show In
Variable Access View
appears, the variable is a
global variable.

1 Select the option Show In Variable Access View.

On the Variable Access pane, the current instance of the
variable is shown.

2 On this pane, select the previous instances of the variable.

Write operations on the variable are indicated with and
read operations with .

Function return value

ret=func();

1 Find the function definition.

Right-click func on the Source pane. Select Go To
Definition, if the option exists. If the definition is not
available to Polyspace, selecting the option takes you to the
function declaration.

2 In the definition of func, identify each return statement.
The variable that the function returns is your new variable
to trace back.

You can also determine if variables in any operation are related from some previous operation. See
“Find Relations Between Variables in Code” on page 4-74.

Step 3: Look for Common Causes of Check
Look for common causes of the Unreachable code check.

• Look for the following in your if tests:

• You are testing the variables that you intend to test.

For example, you might have a local variable that shadows a global variable. You might be
testing the local variable when you intend to test the global one.

• You are using parentheses to impose the sequence in which you want operations in the if test
to execute.

For example, if((!a && b) || c) imposes a different sequence of operations from if(!(a
&& b) || c). Unless you use parentheses, the operations obey operator precedence rules.
The rules can cause the operations to execute in a sequence that you did not intend.

• You are using = and == operators in the right places.

Possible fix: Correct errors if any.

• Use Polyspace Bug Finder to check for common defects such as Invalid use of =
operator and Variable shadowing.

• To avoid errors due to incorrect operation sequence, check for violations of MISRA C:2012
Rule 12.1.

• See if you are performing a test that you have performed previously.

The redundant test typically occurs on the argument of a function. The same test is performed
both in the calling and called function.

 Review and Fix Unreachable Code Checks

4-69

https://en.cppreference.com/w/cpp/language/operator_precedence

void foo(void) {
 if(x>0)
 bar(x);
 .
 .
}

void bar(int arg) {
 if(arg==0) {
 }
}

Possible fix: If you intend to call bar later, for example, in yet unwritten code, or reuse bar in
other programs, retain the test in bar. Otherwise, remove the test.

• See if your code is unreachable because it follows a break or return statement.

Possible fix: See if you placed the break or return statement at an unintended place.
• See if the section of unreachable code exists because you are following a coding standard. If so,

retain the section.

For example, the default block of a switch-case statement is present to capture abnormal
values of the switch variable. If such values do not occur, the block is unreachable. However, you
might violate a coding standard if you remove the block.

• See if the unreachable code is related to an orange check earlier in the code. Following an orange
check, Polyspace normally terminates execution paths that contain an error. Because of this
termination, code following an orange check can appear gray.

For example, Polyspace places an orange check on the dereference of a pointer ptr if you have
not vetted ptr for NULL. However, following the dereference, it considers that ptr is not NULL. If
a test if(ptr==NULL) follows the dereference of ptr, Polyspace marks the corresponding code
block unreachable.

For more examples, see:

• “Gray Check Following Orange Check” on page 1-49

An exception to this behavior is overflow. If you specify the appropriate Overflow mode for
signed integer or Overflow mode for unsigned integer, Polyspace wraps the result of an
overflow and does not terminate the execution paths. See Overflow mode for signed
integer (-signed-integer-overflows) or Overflow mode for unsigned integer
(-unsigned-integer-overflows). For more information on analysis options, see the
documentation for Polyspace Code Prover or Polyspace Code Prover Server.

• “Left operand of left shift may be negative”

Possible fix: Investigate the orange check. In the above example, investigate why the test
if(ptr==NULL) occurs after the dereference and not before.

4 Reviewing Checks

4-70

Review and Fix User Assertion Checks
Follow one or more of these steps until you determine a fix for the User assertion check. There are
multiple ways to fix this check. For a description of the check and code examples, see User
assertion.

Sometimes, especially for an orange check, you can determine that the check does not represent a
real error but a Polyspace assumption that is not true for your code. If you can use an analysis option
to relax the assumption, rerun the verification using that option. Otherwise, you can add a comment
and justification in your result or code.

For the general workflow that applies to all checks, see “Interpret Polyspace Code Prover Access
Results” on page 1-2.

How to use this check: Typically you use assert statements during debugging to check if a
condition is satisfied at the current point in your code. For instance, if you expect a variable var to
have values in a range [1,10] at a certain point in your code, you place the following statement at
that point:

assert(var >=1 && var <= 10);

Polyspace statically determines whether the condition is satisfied.

Therefore, you can judiciously insert assert statements that test for requirements from your code.

• A red result for the User assertion check indicates that the requirement is definitely not met.
• An orange result for the User assertion check indicates that the requirement is possibly not met.

Step 1: Determine Root Cause of Check
Trace the data flow for each variable involved in the assert statement.

In the following example, trace the data flow for myArray.

int* getArray(int numberOfElements) {
 .
 .
 arrayPtr = (int*) malloc(numberOfElements);
 .
 .
 return arrayPtr;
}
void func() {
 int* myArray = getArray(10);
 assert(myArray!=NULL);
 .
 .
}

In this example, it is possible that in getArray, the return value of malloc is not checked for NULL.

Possible fix: If you expect a certain requirement, see if you have tests that enforce the requirement.
In this example, if you expect getArray to return a non-NULL value, in getArray, test the return
value of malloc for NULL.

 Review and Fix User Assertion Checks

4-71

To trace the data flow, select the check and note the information on the Result Details pane.

• If the Result Details pane shows the sequence of instructions that lead to the check, select each
instruction.

• If the Result Details pane shows the line number of probable cause for the check, right-click in
the Source pane. Select Go To Line. Enter the line number.

• Otherwise, for each variable involved in the condition, find previous instances and trace back to
the root cause of the check. For more information on common root causes, see “Step 3: Look for
Common Causes of Check” on page 4-69.

Depending on the variable, use the following navigation shortcuts to find previous instances. You
can perform the following steps in the Polyspace user interface only.

Variable How to Find Previous Instances of Variable
Local Variable Use one of the following methods:

• Search for the variable.

1 Right-click the variable. Select Search For All
References.

All instances of the variable appear on the Search pane
with the current instance highlighted.

2 On the Search pane, select the previous instances.
• Browse the source code.

1 Double-click the variable on the Source pane.

All instances of the variable are highlighted.
2 Scroll up to find the previous instances.

Global Variable

Right-click the variable. If
the option Show In
Variable Access View
appears, the variable is a
global variable.

1 Select the option Show In Variable Access View.

On the Variable Access pane, the current instance of the
variable is shown.

2 On this pane, select the previous instances of the variable.

Write operations on the variable are indicated with and
read operations with .

Function return value

ret=func();

1 Find the function definition.

Right-click func on the Source pane. Select Go To
Definition, if the option exists. If the definition is not
available to Polyspace, selecting the option takes you to the
function declaration.

2 In the definition of func, identify each return statement.
The variable that the function returns is your new variable
to trace back.

You can also determine if variables in any operation are related from some previous operation. See
“Find Relations Between Variables in Code” on page 4-74.

4 Reviewing Checks

4-72

Step 2: Look for Common Causes of Check
1 If the check is orange and occurs in a function, see if the function is called multiple times.

Determine if the assertion fails only on certain calls. For those calls, navigate to the caller body
and see if you have tests that enforce your assertion requirement.

• To see the callers of a function, select the function name on the Source pane. All callers
appear on the Call Hierarchy pane. Select a caller name to navigate to it in your source.

• To determine if a subset of calls cause the orange check, use the option Sensitivity
context (-context-sensitivity).. For more information on analysis options, see the
documentation for Polyspace Code Prover or Polyspace Code Prover Server.

2 If you have tests that enforce the assertion requirement, see if:

• The assertion statement is within the scope of the tests.
• You modify the test variables between the test and the assertion.

For instance, the test if(index < SIZE) enforces that index is less than SIZE. However, the
assertion assert(index < SIZE) can fail if:

• It occurs outside the if block.
• Before the assertion, you modify index in the if block.

Possible fix: Consider carefully whether you must meet your assertion requirements. If you must
meet those requirements, place tests that enforce your requirement. After the tests, avoid
modifying the test variables.

Step 3: Trace Check to Polyspace Assumption
See if you can trace the orange check to a Polyspace assumption that occurs earlier in the code. If the
assumption does not hold true in your case, add a comment or justification in your result or code. See
“Address Polyspace Results Through Bug Fixes or Justifications” on page 2-2.

For instance, after a function call, you assert a relation between two variables. Then:

1 Depending on the depth of the function call and the complexity of your code, Polyspace can
sometimes approximate the variable ranges. Because of the approximation, the software cannot
establish if the relation holds and produces an orange User assertion check.

2 Run dynamic tests on the orange check to determine if the assertion fails.
3 Try to reduce your code complexity and rerun the verification. Otherwise, add a comment and a

justification in your result or code describing why you did not change your code.

For more information, see “Code Prover Analysis Assumptions”.

Note Before justifying an orange check, consider carefully whether you can improve your coding
design.

 Review and Fix User Assertion Checks

4-73

Find Relations Between Variables in Code
This tutorial shows how to determine if the variables in an arbitrary operation in your code are
previously related.

For instance, consider this operation:

return(var1 - var2);

• In your IDE, you can place breakpoints to stop execution and determine the values of var1 and
var2 for a specific run.

• In Polyspace, after you analyze your code, the tooltips on var1 and var2 show their range of
values for all runs that the verification considers.

However, the range information is not enough to determine if the variables are related. You must
perform additional steps to determine the relation. These steps can be performed in projects using
the C language only.

Insert Pragma to Determine Variable Relation
In this example, consider the operation highlighted. You cannot tell from a quick glance if
wheel_speed and wheel_speed_old are related. However, this information is crucial to
understand a possible bug in subsequent operations.

#define MAX_SPEED 120
#define TEST_TIME 10000

int wheel_speed;
int wheel_speed_old;

int out;

int update_speed(int new_speed) {
 if(new_speed < MAX_SPEED)
 return new_speed;
 else
 return MAX_SPEED;
}

void increase_speed(void)
{

 int temp, index=1;

 while(index<TEST_TIME) {
 temp = wheel_speed - wheel_speed_old;

 if(index > 1) {
 if (temp < 0)
 out = 1;
 else
 out = 0;
 }

 wheel_speed_old = update_speed(wheel_speed);

4 Reviewing Checks

4-74

 index++;
 }

}

To understand why you need the relation between wheel_speed and wheel_speed_old and how to
find the relation:

1 Set up the Polyspace analysis configuration:

• Set the source code language to C. Use the analysis option -lang.
• Constrain the range of the variable wheel_speed to an initial value of 0..100 for the

Polyspace analysis. Use the analysis option Constraint setup (-data-range-
specifications). For more information on analysis options, see the documentation for
Polyspace Code Prover or Polyspace Code Prover Server.

2 Run analysis on this code and open the results. Select the gray Unreachable code check.

if (temp < 0)
 out = 1;

The check indicates that the variable temp is nonnegative. temp comes from the previous
operation:

temp = wheel_speed - wheel_speed_old;
3 See the range of wheel_speed and wheel_speed_old. Place your cursor on these variables.

You see these ranges:

• wheel_speed: 0..100
• wheel_speed_old: Full range of an int variable.

It is not clear from these ranges why wheel_speed - wheel_speed_old is always
nonnegative. You have to find out if the variables are somehow related.

4 Insert a pragma before the line where you want the variable relation. Add the following line just
before if(temp < 0):

#pragma Inspection_Point wheel_speed wheel_speed_old
5 Rerun the analysis and open the results. Place your cursor on wheel_speed_old in the line that

you added.

The tooltip confirms that wheel_speed and wheel_speed_old are related:

wheel_speed_old <= wheel_speed
6 To find how the two variables got related, search for all instances of wheel_speed_old. On the

Source pane, right-click wheel_speed_old and select Search For All References.

Browse through the instances. In this case, you see that the line which relates wheel_speed and
wheel_speed_old is:

 wheel_speed_old = update_speed(wheel_speed);

This line ensures that after the first run of the while loop, wheel_speed_old is less than or
equal to wheel_speed_old. The branch if(index > 1) is entered from the second run
onwards. In this branch, the relation between wheel_speed and wheel_speed_old is reflected
through the gray Unreachable code check.

 Find Relations Between Variables in Code

4-75

Tip Ignore the details of the relation shown in the tooltip. Use the tooltip to confirm if certain
variables are related. Then, search for instances of the variable to find how they are related.

Further Exploration
You can use the pragma Inspection_Point to determine the relation between variables at any
point in the code. You can enter as many variables as you want in the #pragma statement:

#pragma Inspection_Point var1 var2 ... varn

Try this technique on other examples. For instance, select Help > Examples >
Code_Prover_Example.psprj. Group the results by file. In the file single_file_analysis.c, you
see this code:

 if (output_v7 >= 0) {

 #pragma Inspection_Point output_v7 s8_ret
 saved_values[output_v7] = s8_ret;
 return s8_ret;
 }

If you place your cursor on s8_ret in the last two statements, you find that the ranges of s8_ret are
different. Find out what changed between the two statements.

Hint: The tooltip in the #pragma statement indicates that the variable s8_ret is related to the
variable output_v7. Note the orange check that reduces the range of output_v7.

See Also

Related Examples
• “Interpret Polyspace Code Prover Access Results” on page 1-2

4 Reviewing Checks

4-76

Review Polyspace Results on AUTOSAR Code
This tutorial describes how to open Polyspace Code Prover results for AUTOSAR-specific code and
interpret results that highlight violation of data constraints in the ARXML.

Code Prover checks the code implementation of AUTOSAR software component-s for mismatch with
specifications in the ARXML. For instance, if an RTE function argument has a value outside the
constrained range defined in the ARXML, the analysis flags a possible issue.

See Overview of Results for all Software Components
Before opening a specific result set, you might want to see an overview of results for all software
components. Do one of the following:

• Open the file psar_project.xhtml in the project folder on the machine where you run the
analysis. If you are reviewing results from a different machine, you might not have access to this
file.

• Upload the result files to Polyspace Access. To begin, see “Upload Results to Polyspace Access
Web Interface” (Polyspace Code Prover Server) and “Interpret Results”.

Use the first method for easier understanding of results.

In the file psar_project.xhtml, click the icon on the upper left. On the left pane, click
Behaviors. You can see the list of all software components whose internal behavior-s are extracted.

You can filter this list to display only the software components that you are interested in. To see
specific software components, in the search box, enter the fully qualified name of the software
component that you are interested in.

You can also enter regular expressions to see multiple components. For instance, to see all
components whose qualified names begin with pkg.tst002.swc001, enter the expression:

^pkg.tst002.swc001.*

Click Search. The list on the right displays only the software components that you queried for.

 Review Polyspace Results on AUTOSAR Code

4-77

You can also filter out components based on other criteria:

• Success or failure of verification

To see only software components that completed verification, click and then clear the error
status filter.

• Presence or absence of certain kinds of results, for instance, red checks

To see only software components that have red checks, click everything on the row containing the
red filter except the red filter itself.

See Runnables and Source Files in Software Component
For each software component, you can see this information in the file psar_project.xhtml in your
project folder (see the preceding figure).

4 Reviewing Checks

4-78

• The state of this software component with respect to the analysis. That is, whether the software
component specification was parsed, its source code extracted, and then analyzed with Code
Prover.

To make sure that the Code Prover analysis was complete, under the section Verification of
extracted implementation code, look for this statement:

State after last command execution: updated.
• Functions provided by this software component and the Rte_ functions used.

To see this list, click the link:

See key autosar definition for this behavior
• Graphical view of runnables in the software component. The graphical view shows:

• Entry-point functions implementing the runnables and their callees
• Files containing these functions

To see this view, in the list of software components on the left pane, click the (behavior graph)
icon for the software component you are interested in. To return from the graph to the textual
description of the software component, click the (behavior page) icon.

 Review Polyspace Results on AUTOSAR Code

4-79

4 Reviewing Checks

4-80

In this example, you see that the software component with internal behavior bhv001 has three
runnables implemented through the entry-point functions foo, init, and step. All three entry-
point functions are defined in the file swc001.c.

The function step calls functions defined in other files, for instance, dep3.c. You can click the
icon for step to see only the files involved in the implementation of the runnable step. To revert
to the full graphical view of the software component, click anywhere in the blank space in the
graph.

• Overview of Code Prover results with links to the result files.

Look for lines like these lines:

Verification results are in summary: green check=84, orange check=2, red check=1

Click the link following the line to open the result file in the Polyspace user interface. If you
haven't opened a .pscp file before, clicking the link might simply download the result file. Make
sure that .pscp files always open in the Polyspace user interface (with the executable
polyspaceroot\polyspace\bin, where polyspaceroot is the Polyspace installation folder).

The results consist of AUTOSAR-specific run-time checks such as Invalid result of AUTOSAR
runnable implementation and general C/C++ run-time checks such as Division by zero.

Interpret AUTOSAR Specific Run-time Checks for Software Component

 Review Polyspace Results on AUTOSAR Code

4-81

On the Results List pane, select the result Invalid result of AUTOSAR runnable implementation
or Invalid use of AUTOSAR runtime environment function. Investigate the result further by
using the information on various panes.

Check Return Value and Arguments

Using the information on the Result Details pane, determine whether the return value or an
argument violates data constraints in the ARXML or can be NULL-valued. Look for the ! icon that
indicates a definite error or the ? icon that indicates a possible error.

For the return value and each argument, you see the actual possible values at run time and the values
allowed by the data type in the ARXML specification. Compare them and find the value that is not
allowed.

The result Invalid result of AUTOSAR runnable implementation determines if the return value of
the function implementing the runnable or the output arguments can violate the data constraints. The
result Invalid use of AUTOSAR runtime environment function determines if the input arguments
to an Rte_ function violates data constraints.

4 Reviewing Checks

4-82

Check Argument Spec (Optional)

Sometimes, you might want to see the Application Data Type from which the variable Base Software
Type originates. Click the blue parameter spec link and see the ARXML extract that describes this
information about the parameter or return value data type:

• Application Data Type, Implementation Data Type, and Base Software Type
• Data Constraint, Unit, and Computation Method

Find Root Cause of Result

Investigate how the variable acquires the values that violate the data constraints. To trace back in
your code, on the Source pane, right-click a variable and search for all its instances or navigate to its
definition. For more tips, see “Interpret Polyspace Code Prover Access Results” on page 1-2.

Decide whether to fix your code or ARXML, or justify the result through comments. See “Address
Polyspace Results Through Bug Fixes or Justifications” on page 2-2.

See Also
Invalid result of AUTOSAR runnable implementation | Invalid use of AUTOSAR
runtime environment function

 Review Polyspace Results on AUTOSAR Code

4-83

Coding Rule Sets and Concepts

• “Polyspace MISRA C 2004 and MISRA AC AGC Checkers” on page 5-2
• “MISRA C:2004 and MISRA AC AGC Coding Rules” on page 5-3
• “Polyspace MISRA C:2012 Checkers” on page 5-35
• “Essential Types in MISRA C: 2012 Rules 10.x” on page 5-36
• “Unsupported MISRA C:2012 Guidelines” on page 5-38
• “Polyspace MISRA C++ Checkers” on page 5-39
• “Unsupported MISRA C++ Coding Rules” on page 5-40
• “Polyspace JSF C++ Checkers” on page 5-44
• “JSF C++ Coding Rules” on page 5-45

5

Polyspace MISRA C 2004 and MISRA AC AGC Checkers
The Polyspace MISRA C:2004 checker helps you comply with the MISRA C 2004 coding standard.1

When MISRA C rules are violated, the MISRA C checker enables Polyspace software to provide
messages with information about the rule violations. Most messages are reported during the compile
phase of an analysis.

The MISRA C checker can check nearly all of the 142 MISRA C:2004 rules.

The MISRA AC AGC checker checks rules from the OBL (obligatory) and REC (recommended)
categories specified by MISRA AC AGC Guidelines for the Application of MISRA-C:2004 in the
Context of Automatic Code Generation.

There are subsets of MISRA coding rules that can have a direct or indirect impact on the selectivity
(reliability percentage) of your results. When you set up rule checking, you can select these subsets
directly. These subsets are defined in:

• “Software Quality Objective Subsets (C:2004)” on page 1-70
• “Software Quality Objective Subsets (AC AGC)” on page 1-74

Note The Polyspace MISRA checker is based on MISRA C:2004, which also incorporates MISRA C
Technical Corrigendum.

See Also

More About
• “MISRA C:2004 and MISRA AC AGC Coding Rules” on page 5-3

1. MISRA and MISRA C are registered trademarks of MIRA Ltd., held on behalf of the MISRA Consortium.

5 Coding Rule Sets and Concepts

5-2

MISRA C:2004 and MISRA AC AGC Coding Rules
In this section...
“Supported MISRA C:2004 and MISRA AC AGC Rules” on page 5-3
“Troubleshooting” on page 5-3
“List of Supported Coding Rules” on page 5-3
“Unsupported MISRA C:2004 and MISRA AC AGC Rules” on page 5-33

Supported MISRA C:2004 and MISRA AC AGC Rules
The following tables list MISRA C:2004 coding rules that the Polyspace coding rules checker
supports. Details regarding how the software checks individual rules and any limitations on the scope
of checking are described in the “Polyspace Specification” column.

Note The Polyspace coding rules checker:

• Supports MISRA-C:2004 Technical Corrigendum 1 for rules 4.1, 5.1, 5.3, 6.1, 6.3, 7.1, 9.2, 10.5,
12.6, 13.5, and 15.0.

• Checks rules specified by MISRA AC AGC Guidelines for the Application of MISRA-C:2004 in the
Context of Automatic Code Generation.

The software reports most violations during the compile phase of an analysis. However, the software
detects violations of rules 9.1 (Non-initialized variable), 12.11 (one of the overflow checks)
using -scalar-overflows-checks signed-and-unsigned), 13.7 (dead code), 14.1 (dead code),
16.2 and 21.1 during code analysis, and reports these violations as run-time errors.

Note Some violations of rules 13.7 and 14.1 are reported during the compile phase of analysis.

Troubleshooting
If you expect a rule violation but do not see it, check out .

List of Supported Coding Rules
• “Environment” on page 5-5
• “Language Extensions” on page 5-6
• “Documentation” on page 5-7
• “Character Sets” on page 5-7
• “Identifiers” on page 5-8
• “Types” on page 5-9
• “Constants” on page 5-9
• “Declarations and Definitions” on page 5-10

 MISRA C:2004 and MISRA AC AGC Coding Rules

5-3

• “Initialization” on page 5-12
• “Arithmetic Type Conversion” on page 5-13
• “Pointer Type Conversion” on page 5-16
• “Expressions” on page 5-17
• “Control Statement Expressions” on page 5-19
• “Control Flow” on page 5-22
• “Switch Statements” on page 5-24
• “Functions” on page 5-25
• “Pointers and Arrays” on page 5-26
• “Structures and Unions” on page 5-27
• “Preprocessing Directives” on page 5-27
• “Standard Libraries” on page 5-30
• “Runtime Failures” on page 5-33

5 Coding Rule Sets and Concepts

5-4

Environment

N. MISRA Definition Messages in report file Polyspace Implementation
1.1 All code shall conform to ISO

9899:1990 “Programming
languages - C”, amended and
corrected by ISO/IEC 9899/
COR1:1995, ISO/IEC 9899/
AMD1:1995, and ISO/IEC 9899/
COR2:1996.

The text All code shall conform
to ISO 9899:1990 Programming
languages C, amended and
corrected by ISO/IEC 9899/
COR1:1995, ISO/IEC 9899/
AMD1:1995, and ISO/IEC 9899/
COR2:1996 precedes each of the
following messages:

• ANSI C does not allow
‘#include_next'

• ANSI C does not allow
macros with variable
arguments list

• ANSI C does not allow
‘#assert’

• ANSI C does not allow
'#unassert'

• ANSI C does not allow
testing assertions

• ANSI C does not allow
'#ident'

• ANSI C does not allow
'#sccs'

• text following '#else' violates
ANSI standard.

• text following '#endif'
violates ANSI standard.

• text following '#else' or
'#endif' violates ANSI
standard.

All the supported extensions
lead to a violation of this MISRA
rule. Standard compilation error
messages do not lead to a
violation of this MISRA rule and
remain unchanged.

 MISRA C:2004 and MISRA AC AGC Coding Rules

5-5

N. MISRA Definition Messages in report file Polyspace Implementation
1.1
(cont.)

 The text All code shall conform
to ISO 9899:1990 Programming
languages C, amended and
corrected by ISO/IEC 9899/
COR1:1995, ISO/IEC 9899/
AMD1:1995, and ISO/IEC 9899/
COR2:1996 precedes each of the
following messages:

• ANSI C90 forbids 'long long
int' type.

• ANSI C90 forbids 'long
double' type.

• ANSI C90 forbids long long
integer constants.

• Keyword 'inline' should not
be used.

• Array of zero size should not
be used.

• Integer constant does not fit
within unsigned long int.

• Integer constant does not fit
within long int.

• Too many nesting levels of
#includes: N1. The limit is
N0.

• Too many macro definitions:
N1. The limit is N0.

• Too many nesting levels for
control flow: N1. The limit is
N0.

• Too many enumeration
constants: N1. The limit is N0.

Language Extensions

N. MISRA Definition Messages in report file Polyspace Implementation
2.1 Assembly language shall be

encapsulated and isolated.
Assembly language shall be
encapsulated and isolated.

No warnings if code is
encapsulated in the following:

• asm functions or asm
pragma

• Macros

5 Coding Rule Sets and Concepts

5-6

N. MISRA Definition Messages in report file Polyspace Implementation
2.2 Source code shall only use /* */

style comments
C++ comments shall not be
used.

C++ comments are handled as
comments but lead to a violation
of this MISRA rule

Note: This rule cannot be
annotated in the source code.

2.3 The character sequence /* shall
not be used within a comment

The character sequence /* shall
not appear within a comment.

This rule violation is also raised
when the character sequence /*
inside a C++ comment.

Note: This rule cannot be
annotated in the source code.

Documentation

Rule MISRA Definition Messages in report file Polyspace Implementation
3.4 All uses of the #pragma directive

shall be documented and
explained.

All uses of the #pragma directive
shall be documented and
explained.

To check this rule, you must list
the pragmas that are allowed in
source files by using the option
Allowed pragmas (-
allowed-pragmas). If
Polyspace finds a pragma not in
the allowed pragma list, a
violation is raised.For more on
analysis options, see the
documentation for Polyspace
Code Prover or Polyspace Code
Prover Server

Character Sets

N. MISRA Definition Messages in report file Polyspace Implementation
4.1 Only those escape sequences

which are defined in the ISO C
standard shall be used.

\<character> is not an ISO C
escape sequence Only those
escape sequences which are
defined in the ISO C standard
shall be used.

4.2 Trigraphs shall not be used. Trigraphs shall not be used. Trigraphs are handled and
converted to the equivalent
character but lead to a violation
of the MISRA rule

 MISRA C:2004 and MISRA AC AGC Coding Rules

5-7

Identifiers

N. MISRA Definition Messages in report file Polyspace Implementation
5.1 Identifiers (internal and external)

shall not rely on the significance
of more than 31 characters

Identifier 'XX' should not rely on
the significance of more than 31
characters.

All identifiers (global, static and
local) are checked.

For easier review, the rule
checker shows all identifiers that
have the same first 31
characters as one rule violation.
You can see all instances of
conflicting identifier names in
the event history of that rule
violation.

5.2 Identifiers in an inner scope shall
not use the same name as an
identifier in an outer scope, and
therefore hide that identifier.

• Local declaration of XX is
hiding another identifier.

• Declaration of parameter XX
is hiding another identifier.

Assumes that rule 8.1 is not
violated.

5.3 A typedef name shall be a unique
identifier

{typedef name}'%s' should not
be reused. (already used as
{typedef name} at %s:%d)

Warning when a typedef name is
reused as another identifier
name.

5.4 A tag name shall be a unique
identifier

{tag name}'%s' should not be
reused. (already used as {tag
name} at %s:%d)

Warning when a tag name is
reused as another identifier
name

5.5 No object or function identifier
with a static storage duration
should be reused.

{static identifier/parameter
name}’%s’ should not be reused.
(already used as {static
identifier/parameter name} with
static storage duration at
%s:%d)

Warning when a static name is
reused as another identifier
name

Bug Finder and Code Prover
check this coding rule
differently. The analyses can
produce different results.

5.6 No identifier in one name space
should have the same spelling as
an identifier in another name
space, with the exception of
structure and union member
names.

{member name}'%s' should not
be reused. (already used as
{member name} at %s:%d)

Warning when an idf in a
namespace is reused in another
namespace

5.7 No identifier name should be
reused.

{identifier}'%s' should not be
reused. (already used as
{identifier} at %s:%d)

No violation reported when:

• Different functions have
parameters with the same
name

• Different functions have local
variables with the same name

• A function has a local
variable that has the same
name as a parameter of
another function

5 Coding Rule Sets and Concepts

5-8

Types

N. MISRA Definition Messages in report file Polyspace Implementation
6.1 The plain char type shall be used

only for the storage and use of
character values

Only permissible operators on
plain chars are '=', '==' or '!='
operators, explicit casts to
integral types and '?' (for the
2nd and 3rd operands)

Warning when a plain char is
used with an operator other than
=, ==, !=, explicit casts to
integral types, or as the second
or third operands of the ?
operator.

6.2 Signed and unsigned char type
shall be used only for the storage
and use of numeric values.

• Value of type plain char is
implicitly converted to signed
char.

• Value of type plain char is
implicitly converted to
unsigned char.

• Value of type signed char is
implicitly converted to plain
char.

• Value of type unsigned char
is implicitly converted to
plain char.

Warning if value of type plain
char is implicitly converted to
value of type signed char or
unsigned char.

6.3 typedefs that indicate size and
signedness should be used in
place of the basic types

typedefs that indicate size and
signedness should be used in
place of the basic types.

No warning is given in typedef
definition.

6.4 Bit fields shall only be defined to
be of type unsigned int or signed
int.

Bit fields shall only be defined to
be of type unsigned int or signed
int.

6.5 Bit fields of type signed int shall
be at least 2 bits long.

Bit fields of type signed int shall
be at least 2 bits long.

No warning on anonymous
signed int bitfields of width 0 -
Extended to all signed bitfields
of size <= 1 (if Rule 6.4 is
violated).

Constants

N. MISRA Definition Messages in report file Polyspace Implementation
7.1 Octal constants (other than zero)

and octal escape sequences shall
not be used.

• Octal constants other than
zero and octal escape
sequences shall not be used.

• Octal constants (other than
zero) should not be used.

• Octal escape sequences
should not be used.

 MISRA C:2004 and MISRA AC AGC Coding Rules

5-9

Declarations and Definitions

N. MISRA Definition Messages in report file Polyspace Implementation
8.1 Functions shall have prototype

declarations and the prototype
shall be visible at both the
function definition and call.

• Function XX has no complete
prototype visible at call.

• Function XX has no prototype
visible at definition.

Prototype visible at call must be
complete.

8.2 Whenever an object or function is
declared or defined, its type shall
be explicitly stated

Whenever an object or function is
declared or defined, its type shall
be explicitly stated.

8.3 For each function parameter the
type given in the declaration and
definition shall be identical, and
the return types shall also be
identical.

Definition of function 'XX'
incompatible with its declaration.

Assumes that rule 8.1 is not
violated. The rule is restricted to
compatible types. Can be turned
to Off

8.4 If objects or functions are
declared more than once their
types shall be compatible.

• If objects or functions are
declared more than once their
types shall be compatible.

• Global declaration of 'XX'
function has incompatible
type with its definition.

• Global declaration of 'XX'
variable has incompatible type
with its definition.

Violations of this rule might be
generated during the link phase.

Bug Finder and Code Prover
check this coding rule differently.
The analyses can produce
different results.

8.5 There shall be no definitions of
objects or functions in a header
file

• Object 'XX' should not be
defined in a header file.

• Function 'XX' should not be
defined in a header file.

• Fragment of function should
not be defined in a header file.

Tentative definitions are
considered as definitions. For
objects with file scope, tentative
definitions are declarations that:

• Do not have initializers.
• Do not have storage class
specifiers, or have the static
specifier

8.6 Functions shall always be
declared at file scope.

Function 'XX' should be declared
at file scope.

This rule maps to ISO/IEC TS
17961 ID addrescape.

8.7 Objects shall be defined at block
scope if they are only accessed
from within a single function

Object 'XX' should be declared at
block scope.

Restricted to static objects.

5 Coding Rule Sets and Concepts

5-10

N. MISRA Definition Messages in report file Polyspace Implementation
8.8 An external object or function

shall be declared in one file and
only one file

Function/Object 'XX' has external
declarations in multiple files.

Restricted to explicit extern
declarations (tentative definitions
are ignored).

Polyspace considers that
variables or functions declared
extern in a non-header file
violate this rule.

Bug Finder and Code Prover
check this coding rule differently.
The analyses can produce
different results.

8.9 An identifier with external
linkage shall have exactly one
external definition.

• Procedure/Global variable XX
multiply defined.

• Forbidden multiple tentative
definitions for object XX

• Global variable has multiple
tentative definitions

• Undefined global variable XX

The checker flags multiple
definitions only if the definitions
occur in different files.

No warnings appear on
predefined symbols.

Bug Finder and Code Prover
check this coding rule differently.
The analyses can produce
different results.

8.10 All declarations and definitions of
objects or functions at file scope
shall have internal linkage unless
external linkage is required

Function/Variable XX should have
internal linkage.

Assumes that 8.1 is not violated.
No warning if 0 uses.

If your code does not contain a
main function and you use
options such as -main-generator-
writes-variables with value
custom to explicitly specify a set
of variables to initialize, the
checker does not flag those
variables. The checker assumes
that in a real application, the file
containing the main must
initialize the variables in addition
to any file that currently uses
them. Therefore, the variables
must be used in more than one
translation unit.

Bug Finder and Code Prover
check this coding rule differently.
The analyses can produce
different results.

 MISRA C:2004 and MISRA AC AGC Coding Rules

5-11

N. MISRA Definition Messages in report file Polyspace Implementation
8.11 The static storage class specifier

shall be used in definitions and
declarations of objects and
functions that have internal
linkage

static storage class specifier
should be used on internal
linkage symbol XX.

8.12 When an array is declared with
external linkage, its size shall be
stated explicitly or defined
implicitly by initialization

Size of array 'XX' should be
explicitly stated.

Initialization

N. MISRA Definition Messages in report file Polyspace Implementation
9.1 All automatic variables shall have

been assigned a value before
being used.

 Checked during code analysis.

Violations displayed as Non-
initialized variable results.

Bug Finder and Code Prover
check this coding rule
differently. The analyses can
produce different results. In
Code Prover, you can also see a
difference in results based on
your choice for the option
Verification level (-to).
See .the documentation for
Polyspace Code Prover or
Polyspace Code Prover Server
for more on analysis options and
how to check for coding
standard violations.

9.2 Braces shall be used to indicate
and match the structure in the
nonzero initialization of arrays
and structures.

Braces shall be used to indicate
and match the structure in the
nonzero initialization of arrays
and structures.

9.3 In an enumerator list, the =
construct shall not be used to
explicitly initialize members other
than the first, unless all items are
explicitly initialized.

In an enumerator list, the =
construct shall not be used to
explicitly initialize members
other than the first, unless all
items are explicitly initialized.

5 Coding Rule Sets and Concepts

5-12

Arithmetic Type Conversion

N. MISRA Definition Messages in report file Polyspace Implementation
10.1 The value of an expression of

integer type shall not be implicitly
converted to a different
underlying type if:

• it is not a conversion to a
wider integer type of the same
signedness, or

• the expression is complex, or
• the expression is not constant

and is a function argument, or
• the expression is not constant

and is a return expression

• Implicit conversion of the
expression of underlying type
XX to the type XX that is not
a wider integer type of the
same signedness.

• Implicit conversion of one of
the binary operands whose
underlying types are XX and
XX

• Implicit conversion of the
binary right hand operand of
underlying type XX to XX
that is not an integer type.

• Implicit conversion of the
binary left hand operand of
underlying type XX to XX that
is not an integer type.

• Implicit conversion of the
binary right hand operand of
underlying type XX to XX that
is not a wider integer type of
the same signedness or
Implicit conversion of the
binary ? left hand operand of
underlying type XX to XX, but
it is a complex expression.

• Implicit conversion of
complex integer expression
of underlying type XX to XX.

• Implicit conversion of non-
constant integer expression
of underlying type XX in
function return whose
expected type is XX.

• Implicit conversion of non-
constant integer expression
of underlying type XX as
argument of function whose
corresponding parameter
type is XX.

ANSI C base types order (signed
char, short, int, long) defines
that T2 is wider than T1 if T2 is
on the right hand of T1 or T2 =
T1. The same interpretation is
applied on the unsigned version
of base types.

An expression of bool or enum
types has int as underlying type.

Plain char may have signed or
unsigned underlying type
(depending on Polyspace target
configuration or option setting).

The underlying type of a simple
expression of struct.bitfield is
the base type used in the bitfield
definition, the bitfield width is
not token into account and it
assumes that only signed |
unsigned int are used for bitfield
(Rule 6.4).

This rule violation is not
produced on operations
involving pointers.

No violation reported when:

• The implicit conversion is a
type widening, without
change of signedness of
integer

• The expression is an
argument expression or a
return expression

No violation reported when the
following are true:

• Implicit conversion applies to
a constant expression and is
a type widening, with a
possible change of
signedness of integer.

• The conversion does not
change the representation of

 MISRA C:2004 and MISRA AC AGC Coding Rules

5-13

N. MISRA Definition Messages in report file Polyspace Implementation
the constant value or the
result of the operation.

• The expression is an
argument expression or a
return expression or an
operand expression of a non-
bitwise operator.

Conversions of constants are not
reported for these cases to avoid
flagging too many violations. If
the constant can be represented
in both the original and
converted type, the conversion is
less of an issue.

10.2 The value of an expression of
floating type shall not be
implicitly converted to a different
type if

• it is not a conversion to a
wider floating type, or

• the expression is complex, or
• the expression is a function

argument, or
• the expression is a return

expression

• Implicit conversion of the
expression from XX to XX
that is not a wider floating
type.

• Implicit conversion of the
binary ? right hand operand
from XX to XX, but it is a
complex expression.

• Implicit conversion of the
binary ? right hand operand
from XX to XX that is not a
wider floating type or Implicit
conversion of the binary ? left
hand operand from XX to XX,
but it is a complex
expression.

• Implicit conversion of
complex floating expression
from XX to XX.

• Implicit conversion of
floating expression of XX type
in function return whose
expected type is XX.

• Implicit conversion of
floating expression of XX type
as argument of function
whose corresponding
parameter type is XX.

ANSI C base types order (float,
double) defines that T2 is wider
than T1 if T2 is on the right hand
of T1 or T2 = T1.

No violation reported when:

• The implicit conversion is a
type widening

• The expression is an
argument expression or a
return expression.

5 Coding Rule Sets and Concepts

5-14

N. MISRA Definition Messages in report file Polyspace Implementation
10.3 The value of a complex expression

of integer type may only be cast
to a type that is narrower and of
the same signedness as the
underlying type of the expression

Complex expression of
underlying type XX may only be
cast to narrower integer type of
same signedness, however the
destination type is XX.

• The rule checker raises a
defect only if the result of a
composite expression is cast
to a different or wider
essential type.

For instance, in this example,
a violation is shown in the
first assignment to i but not
the second. In the first
assignment, a composite
expression i+1 is directly
cast from a signed to an
unsigned type. In the second
assignment, the composite
expression is first cast to the
same type and then the result
is cast to a different type.

typedef int int32_T;
typedef unsigned char uint8_T;
...
...
int32_T i;
i = (uint8_T)(i+1);
/* Noncompliant */
i = (uint8_T)((int32_T)(i+1));
 /* Compliant */

• ANSI C base types order
(signed char, short, int, long)
defines that T1 is narrower
than T2 if T2 is on the right
hand of T1 or T1 = T2. The
same methodology is applied
on the unsigned version of
base types.

• An expression of bool or
enum types has int as
underlying type.

• Plain char may have signed
or unsigned underlying type
(depending on target
configuration or option
setting).

• The underlying type of a
simple expression of
struct.bitfield is the base
type used in the bitfield
definition, the bitfield width
is not token into account and
it assumes that only signed,

 MISRA C:2004 and MISRA AC AGC Coding Rules

5-15

N. MISRA Definition Messages in report file Polyspace Implementation
unsigned int are used for
bitfield (Rule 6.4).

10.4 The value of a complex expression
of float type may only be cast to
narrower floating type

Complex expression of XX type
may only be cast to narrower
floating type, however the
destination type is XX.

ANSI C base types order (float,
double) defines that T1 is
narrower than T2 if T2 is on the
right hand of T1 or T2 = T1.

10.5 If the bitwise operator ~ and <<
are applied to an operand of
underlying type unsigned char or
unsigned short, the result shall be
immediately cast to the
underlying type of the operand

Bitwise [<<|~] is applied to the
operand of underlying type
[unsigned char|unsigned short],
the result shall be immediately
cast to the underlying type.

10.6 The “U” suffix shall be applied to
all constants of unsigned types

No explicit 'U suffix on constants
of an unsigned type.

 Warning when the type
determined from the value and
the base (octal, decimal or
hexadecimal) is unsigned and
there is no suffix u or U.

For example, when the size of
the int and long int data
types is 32 bits, the coding rule
checker will report a violation of
rule 10.6 for the following line:

int a = 2147483648;

There is a difference between
decimal and hexadecimal
constants when int and long
int are not the same size.

Pointer Type Conversion

N. MISRA Definition Messages in report file Polyspace Implementation
11.1 Conversion shall not be

performed between a pointer to a
function and any type other than
an integral type

Conversion shall not be
performed between a pointer to
a function and any type other
than an integral type.

Casts and implicit conversions
involving a function pointer.

Casts or implicit conversions
from NULL or (void*)0 do not
give any warning.

11.2 Conversion shall not be
performed between a pointer to
an object and any type other than
an integral type, another pointer
to a object type or a pointer to
void

Conversion shall not be
performed between a pointer to
an object and any type other
than an integral type, another
pointer to a object type or a
pointer to void.

There is also a warning on
qualifier loss

This rule maps to ISO/IEC TS
17961 ID alignconv.

5 Coding Rule Sets and Concepts

5-16

N. MISRA Definition Messages in report file Polyspace Implementation
11.3 A cast should not be performed

between a pointer type and an
integral type

A cast should not be performed
between a pointer type and an
integral type.

Exception on zero constant.
Extended to all conversions

This rule maps to ISO/IEC TS
17961 ID alignconv.

11.4 A cast should not be performed
between a pointer to object type
and a different pointer to object
type.

A cast should not be performed
between a pointer to object type
and a different pointer to object
type.

11.5 A cast shall not be performed that
removes any const or volatile
qualification from the type
addressed by a pointer

A cast shall not be performed
that removes any const or
volatile qualification from the
type addressed by a pointer

Extended to all conversions

Expressions

N. MISRA Definition Messages in report file Polyspace Implementation
12.1 Limited dependence should be

placed on C's operator
precedence rules in expressions

Limited dependence should be
placed on C's operator
precedence rules in expressions

12.2 The value of an expression shall
be the same under any order of
evaluation that the standard
permits.

• The value of 'sym' depends
on the order of evaluation.

• The value of volatile 'sym'
depends on the order of
evaluation because of multiple
accesses.

Rule 12.2 check assumes that no
assignment in expressions that
yield a Boolean values (rule
13.1).

The expression is a simple
expression of symbols. i = i++;
is a violation, but tab[2] =
tab[2]++; is not a violation.

12.3 The sizeof operator should not
be used on expressions that
contain side effects.

The sizeof operator should not
be used on expressions that
contain side effects.

No warning on volatile accesses

12.4 The right hand operand of a
logical && or || operator shall not
contain side effects.

The right hand operand of a
logical && or || operator shall not
contain side effects.

No warning on volatile accesses

12.5 The operands of a logical && or
|| shall be primary-expressions.

• operand of logical && is not a
primary expression

• operand of logical || is not a
primary expression

• The operands of a logical &&
or || shall be primary-
expressions.

During preprocessing, violations
of this rule are detected on the
expressions in #if directives.

Allowed exception on
associatively (a && b && c), (a ||
b || c).

 MISRA C:2004 and MISRA AC AGC Coding Rules

5-17

N. MISRA Definition Messages in report file Polyspace Implementation
12.6 Operands of logical operators

(&&, || and !) should be
effectively Boolean. Expression
that are effectively Boolean
should not be used as operands
to operators other than (&&, ||
or !).

• Operand of '!' logical operator
should be effectively Boolean.

• Left operand of '%s' logical
operator should be effectively
Boolean.

• Right operand of '%s' logical
operator should be effectively
Boolean.

• %s operand of '%s' is
effectively Boolean. Boolean
should not be used as
operands to operators other
than '&&', '||', '!', '=', '==', '!
=' and '?:'.

The operand of a logical operator
should be a Boolean data type.
Although the C standard does not
explicitly define the Boolean data
type, the standard implicitly
assumes the use of the Boolean
data type.

Some operators may return
Boolean-like expressions, for
example, (var == 0).

Consider the following code:

unsigned char flag;
if (!flag)

The rule checker reports a
violation of rule 12.6:

Operand of '!' logical
operator should be
effectively Boolean.

The operand flag is not a
Boolean but an unsigned char.

To be compliant with rule 12.6,
the code must be rewritten either
as

if (!(flag != 0))

or

if (flag == 0)

The use of the option -boolean-
types may increase or decrease
the number of warnings
generated.

12.7 Bitwise operators shall not be
applied to operands whose
underlying type is signed

• [~/Left Shift/Right shift/&]
operator applied on an
expression whose underlying
type is signed.

• Bitwise ~ on operand of
signed underlying type XX.

• Bitwise [<<|>>] on left hand
operand of signed underlying
type XX.

• Bitwise [& | ^] on two
operands of s

The underlying type for an
integer is signed when:

• it does not have a u or U suffix
• it is small enough to fit into a

64 bits signed number

5 Coding Rule Sets and Concepts

5-18

N. MISRA Definition Messages in report file Polyspace Implementation
12.8 The right hand operand of a shift

operator shall lie between zero
and one less than the width in
bits of the underlying type of the
left hand operand.

• shift amount is negative
• shift amount is bigger than 64
• Bitwise [<< >>] count out of

range [0 ..X] (width of the
underlying type XX of the left
hand operand - 1)..

The numbers that are
manipulated in preprocessing
directives are 64 bits wide so that
valid shift range is between 0 and
63

Check is also extended onto
bitfields with the field width or
the width of the base type when
it is within a complex expression

12.9 The unary minus operator shall
not be applied to an expression
whose underlying type is
unsigned.

• Unary - on operand of
unsigned underlying type XX.

• Minus operator applied to an
expression whose underlying
type is unsigned

The underlying type for an
integer is signed when:

• it does not have a u or U suffix
• it is small enough to fit into a

64 bits signed number
12.10 The comma operator shall not be

used.
The comma operator shall not be
used.

12.11 Evaluation of constant unsigned
expression should not lead to
wraparound.

Evaluation of constant unsigned
integer expressions should not
lead to wrap-around.

12.12 The underlying bit
representations of floating-point
values shall not be used.

The underlying bit
representations of floating-point
values shall not be used.

Warning when:

• A float pointer is cast as a
pointer to another data type.
Casting a float pointer as a
pointer to void does not
generate a warning.

• A float is packed with another
data type. For example:

union {
 float f;
 int i;
} …

12.13 The increment (++) and
decrement (--) operators should
not be mixed with other
operators in an expression

The increment (++) and
decrement (--) operators should
not be mixed with other
operators in an expression

Warning when ++ or -- operators
are not used alone.

Control Statement Expressions

N. MISRA Definition Messages in report file Polyspace Implementation
13.1 Assignment operators shall not

be used in expressions that yield
Boolean values.

Assignment operators shall not
be used in expressions that yield
Boolean values.

 MISRA C:2004 and MISRA AC AGC Coding Rules

5-19

N. MISRA Definition Messages in report file Polyspace Implementation
13.2 Tests of a value against zero

should be made explicit, unless
the operand is effectively Boolean

Tests of a value against zero
should be made explicit, unless
the operand is effectively Boolean

No warning is given on integer
constants. Example: if (2)

The use of the option -boolean-
types may increase or decrease
the number of warnings
generated.

13.3 Floating-point expressions shall
not be tested for equality or
inequality.

Floating-point expressions shall
not be tested for equality or
inequality.

Warning on directs tests only.

13.4 The controlling expression of a
for statement shall not contain
any objects of floating type

The controlling expression of a
for statement shall not contain
any objects of floating type

If for index is a variable symbol,
checked that it is not a float.

13.5 The three expressions of a for
statement shall be concerned
only with loop control

• 1st expression should be an
assignment.

• Bad type for loop counter
(XX).

• 2nd expression should be a
comparison.

• 2nd expression should be a
comparison with loop counter
(XX).

• 3rd expression should be an
assignment of loop counter
(XX).

• 3rd expression: assigned
variable should be the loop
counter (XX).

• The following kinds of for
loops are allowed:

(a) all three expressions shall
be present;

(b) the 2nd and 3rd
expressions shall be present
with prior initialization of the
loop counter;

(c) all three expressions shall
be empty for a deliberate
infinite loop.

Checked if the for loop index (V)
is a variable symbol; checked if V
is the last assigned variable in
the first expression (if present).
Checked if, in first expression, if
present, is assignment of V;
checked if in 2nd expression, if
present, must be a comparison of
V; Checked if in 3rd expression, if
present, must be an assignment
of V.

13.6 Numeric variables being used
within a for loop for iteration
counting should not be modified
in the body of the loop.

Numeric variables being used
within a for loop for iteration
counting should not be modified
in the body of the loop.

Detect only direct assignments if
the for loop index is known and if
it is a variable symbol.

5 Coding Rule Sets and Concepts

5-20

N. MISRA Definition Messages in report file Polyspace Implementation
13.7 Boolean operations whose results

are invariant shall not be
permitted

• Boolean operations whose
results are invariant shall not
be permitted. Expression is
always true.

• Boolean operations whose
results are invariant shall not
be permitted. Expression is
always false.

• Boolean operations whose
results are invariant shall not
be permitted.

During compilation, check
comparisons with at least one
constant operand.

Bug Finder and Code Prover
check this coding rule differently.
The analyses can produce
different results.

• Bug Finder flags some
violations of this rule through
the Dead code and Useless
if checkers.

• Code Prover does not use gray
code to flag violations of this
rule.

In Code Prover, you can also see
a difference in results based on
your choice for the option
Verification level (-to).
See .the documentation for
Polyspace Code Prover or
Polyspace Code Prover Server for
more on analysis options and how
to check for coding standard
violations..

The rule violation appears when
you check whether an enum
variable value lies between its
lower and upper bound. The
violation appears even if you
increment or decrement the
variable outside its bounds, for
instance, in this for loop
condition:

enum ec {RED, BLUE, GREEN} col;
for(col=RED; col<=GREEN; col++)
{}

An enum variable can potentially
wrap around when incremented
outside its range and the loop
condition can be always true. To
avoid the rule violation, you can
cast the enum to an integer
before the comparison, for
instance:

 MISRA C:2004 and MISRA AC AGC Coding Rules

5-21

N. MISRA Definition Messages in report file Polyspace Implementation
enum ec {RED, BLUE, GREEN} col;
for(col=RED; (int)col<=GREEN; col++)
{}

Control Flow

N. MISRA Definition Messages in report file Polyspace Implementation
14.1 There shall be no unreachable

code.
There shall be no unreachable
code.

Bug Finder and Code Prover
check this coding rule
differently. The analyses can
produce different results.

14.2 All non-null statements shall
either have at least one side
effect however executed, or
cause control flow to change

All non-null statements shall
either:

• have at least one side effect
however executed, or

• cause control flow to change

14.3 Before preprocessing, a null
statement shall occur on a line by
itself; it may be followed by a
comment provided that the first
character following the null
statement is a white-space
character.

A null statement shall appear on
a line by itself

We assume that a ';' is a null
statement when it is the first
character on a line (excluding
comments). The rule is violated
when:

• there are some comments
before it on the same line.

• there is a comment
immediately after it

• there is something else than
a comment after the ';' on
the same line.

14.4 The goto statement shall not be
used.

The goto statement shall not be
used.

14.5 The continue statement shall not
be used.

The continue statement shall
not be used.

14.6 For any iteration statement there
shall be at most one break
statement used for loop
termination

For any iteration statement
there shall be at most one break
statement used for loop
termination

14.7 A function shall have a single
point of exit at the end of the
function

A function shall have a single
point of exit at the end of the
function

5 Coding Rule Sets and Concepts

5-22

N. MISRA Definition Messages in report file Polyspace Implementation
14.8 The statement forming the body

of a switch, while, do while or for
statement shall be a compound
statement

• The body of a do while
statement shall be a
compound statement.

• The body of a for statement
shall be a compound
statement.

• The body of a switch
statement shall be a
compound statement

14.9 An if (expression) construct shall
be followed by a compound
statement. The else keyword
shall be followed by either a
compound statement, or another
if statement

• An if (expression) construct
shall be followed by a
compound statement.

• The else keyword shall be
followed by either a
compound statement, or
another if statement

14.10 All if else if constructs should
contain a final else clause.

All if else if constructs should
contain a final else clause.

 MISRA C:2004 and MISRA AC AGC Coding Rules

5-23

Switch Statements

N. MISRA Definition Messages in report file Polyspace Implementation
15.0 The MISRA C switch syntax shall

be used.
switch statements syntax
normative restrictions.

Warning on declarations or any
statements before the first switch
case.

Warning on label or jump
statements in the body of switch
cases.

On the following example, the
rule is displayed in the log file at
line 3:

1 ...
2 switch(index) {
3 var = var + 1;
// RULE 15.0
// violated
4case 1: ...

The code between switch
statement and first case is
checked as dead code by
Polyspace. It follows ANSI
standard behavior.

This rule is not considered as a
required rule in the MISRA
C:2004 rules for generated code.
In generated code, if you find a
violation of rule 15.0 that does
not simultaneously violate a later
rule in this group, justify the
violation with appropriate
comments.

15.1 A switch label shall only be used
when the most closely-enclosing
compound statement is the body
of a switch statement

A switch label shall only be used
when the most closely-enclosing
compound statement is the body
of a switch statement

15.2 An unconditional break statement
shall terminate every non-empty
switch clause

An unconditional break statement
shall terminate every non-empty
switch clause

Warning for each non-compliant
case clause.

15.3 The final clause of a switch
statement shall be the default
clause

The final clause of a switch
statement shall be the default
clause

15.4 A switch expression should not
represent a value that is
effectively Boolean

A switch expression should not
represent a value that is
effectively Boolean

The use of the option -boolean-
types may increase the number
of warnings generated.

5 Coding Rule Sets and Concepts

5-24

N. MISRA Definition Messages in report file Polyspace Implementation
15.5 Every switch statement shall

have at least one case clause
Every switch statement shall
have at least one case clause

Functions

N. MISRA Definition Messages in report file Polyspace Implementation
16.1 Functions shall not be defined

with variable numbers of
arguments.

Function XX should not be
defined as varargs.

16.2 Functions shall not call
themselves, either directly or
indirectly.

Function %s should not call itself. The checker reports each
function that calls itself, directly
or indirectly. Even if several
functions are involved in one
recursion cycle, each function is
individually reported.

You can calculate the total
number of recursion cycles using
the code complexity metric
Number of Recursions.

16.3 Identifiers shall be given for all of
the parameters in a function
prototype declaration.

Identifiers shall be given for all of
the parameters in a function
prototype declaration.

Assumes Rule 8.6 is not violated.

16.4 The identifiers used in the
declaration and definition of a
function shall be identical.

The identifiers used in the
declaration and definition of a
function shall be identical.

Assumes that rules 8.8, 8.1 and
16.3 are not violated.

All occurrences are detected.
16.5 Functions with no parameters

shall be declared with parameter
type void.

Functions with no parameters
shall be declared with parameter
type void.

Definitions are also checked.

16.6 The number of arguments passed
to a function shall match the
number of parameters.

• Too many arguments to XX.
• Insufficient number of

arguments to XX.

Assumes that rule 8.1 is not
violated.

This rule maps to ISO/IEC TS
17961 ID argcomp.

16.7 A pointer parameter in a function
prototype should be declared as
pointer to const if the pointer is
not used to modify the addressed
object.

Pointer parameter in a function
prototype should be declared as
pointer to const if the pointer is
not used to modify the addressed
object.

Warning if a non-const pointer
parameter is either not used to
modify the addressed object or is
passed to a call of a function that
is declared with a const pointer
parameter.

16.8 All exit paths from a function
with non-void return type shall
have an explicit return statement
with an expression.

Missing return value for non-void
function XX.

Warning when a non-void
function is not terminated with
an unconditional return with an
expression.

 MISRA C:2004 and MISRA AC AGC Coding Rules

5-25

N. MISRA Definition Messages in report file Polyspace Implementation
16.9 A function identifier shall only be

used with either a preceding &,
or with a parenthesized
parameter list, which may be
empty.

Function identifier XX should be
preceded by a & or followed by a
parameter list.

16.10 If a function returns error
information, then that error
information shall be tested.

If a function returns error
information, then that error
information shall be tested.

The checker flags functions with
non-void return if the return
value is not used or not explicitly
cast to a void type.

The checker does not flag the
functions memcpy, memset,
memmove, strcpy, strncpy,
strcat, strncat because these
functions simply return a pointer
to their first arguments.

Pointers and Arrays

N. MISRA Definition Messages in report file Polyspace Implementation
17.1 Pointer arithmetic shall only be

applied to pointers that address
an array or array element.

Pointer arithmetic shall only be
applied to pointers that address
an array or array element.

17.2 Pointer subtraction shall only be
applied to pointers that address
elements of the same array

Pointer subtraction shall only be
applied to pointers that address
elements of the same array.

17.3 >, >=, <, <= shall not be applied
to pointer types except where
they point to the same array.

>, >=, <, <= shall not be applied
to pointer types except where
they point to the same array.

17.4 Array indexing shall be the only
allowed form of pointer
arithmetic.

Array indexing shall be the only
allowed form of pointer
arithmetic.

Warning on:

• Operations on pointers. (p+I,
I+p, and p-I, where p is a
pointer and I an integer).

• Array indexing on nonarray
pointers.

17.5 A type should not contain more
than 2 levels of pointer
indirection

A type should not contain more
than 2 levels of pointer
indirection

17.6 The address of an object with
automatic storage shall not be
assigned to an object that may
persist after the object has
ceased to exist.

Pointer to a parameter is an
illegal return value. Pointer to a
local is an illegal return value.

Warning when assigning address
to a global variable, returning a
local variable address, or
returning a parameter address.

This rule maps to ISO/IEC TS
17961 ID accfree.

5 Coding Rule Sets and Concepts

5-26

Structures and Unions

N. MISRA Definition Messages in report file Polyspace Implementation
18.1 All structure or union types shall

be complete at the end of a
translation unit.

All structure or union types shall
be complete at the end of a
translation unit.

Warning for all incomplete
declarations of structs or unions.

18.2 An object shall not be assigned to
an overlapping object.

• An object shall not be
assigned to an overlapping
object.

• Destination and source of XX
overlap, the behavior is
undefined.

18.4 Unions shall not be used Unions shall not be used.

Preprocessing Directives

N. MISRA Definition Messages in report file Polyspace Implementation
19.1 #include statements in a file shall

only be preceded by other
preprocessors directives or
comments

#include statements in a file shall
only be preceded by other
preprocessors directives or
comments

A message is displayed when a
#include directive is preceded by
other things than preprocessor
directives, comments, spaces or
“new lines”.

19.2 Nonstandard characters should
not occur in header file names in
#include directives

• A message is displayed on
characters ', " or /* between <
and > in #include <filename>

• A message is displayed on
characters ', or /* between "
and " in #include "filename"

19.3 The #include directive shall be
followed by either a <filename>
or "filename" sequence.

• '#include' expects
"FILENAME" or
<FILENAME>

• '#include_next' expects
"FILENAME" or
<FILENAME>

 MISRA C:2004 and MISRA AC AGC Coding Rules

5-27

N. MISRA Definition Messages in report file Polyspace Implementation
19.4 C macros shall only expand to a

braced initializer, a constant, a
parenthesized expression, a type
qualifier, a storage class specifier,
or a do-while-zero construct.

Macro '<name>' does not expand
to a compliant construct.

We assume that a macro
definition does not violate this
rule when it expands to:

• a braced construct (not
necessarily an initializer)

• a parenthesized construct (not
necessarily an expression)

• a number
• a character constant
• a string constant (can be the

result of the concatenation of
string field arguments and
literal strings)

• the following keywords:
typedef, extern, static, auto,
register, const, volatile,
__asm__ and __inline__

• a do-while-zero construct
19.5 Macros shall not be #defined and

#undefd within a block.
• Macros shall not be

#define’d within a block.
• Macros shall not be #undef’d

within a block.

19.6 #undef shall not be used. #undef shall not be used.
19.7 A function should be used in

preference to a function like-
macro.

A function should be used in
preference to a function like-
macro

Message on all function-like
macro definitions.

19.8 A function-like macro shall not be
invoked without all of its
arguments

• arguments given to macro
'<name>'

• macro '<name>' used without
args.

• macro '<name>' used with
just one arg.

• macro '<name>' used with
too many (<number>) args.

19.9 Arguments to a function-like
macro shall not contain tokens
that look like preprocessing
directives.

Macro argument shall not look
like a preprocessing directive.

This rule is detected as violated
when the '#' character appears in
a macro argument (outside a
string or character constant)

5 Coding Rule Sets and Concepts

5-28

N. MISRA Definition Messages in report file Polyspace Implementation
19.10 In the definition of a function-like

macro each instance of a
parameter shall be enclosed in
parentheses unless it is used as
the operand of # or ##.

Parameter instance shall be
enclosed in parentheses.

If x is a macro parameter, the
following instances of x as an
operand of the # and ##
operators do not generate a
warning: #x, ##x, and x##.
Otherwise, parentheses are
required around x.

The software does not generate a
warning if a parameter is reused
as an argument of a function or
function-like macro. For example,
consider a parameter x. The
software does not generate a
warning if x appears as (x) or
(x, or ,x) or ,x,.

19.11 All macro identifiers in
preprocessor directives shall be
defined before use, except in
#ifdef and #ifndef preprocessor
directives and the defined()
operator.

'<name>' is not defined.

19.12 There shall be at most one
occurrence of the # or ##
preprocessor operators in a
single macro definition.

More than one occurrence of the
or ## preprocessor operators.

19.13 The # and ## preprocessor
operators should not be used

Message on definitions of macros
using # or ## operators

19.14 The defined preprocessor
operator shall only be used in one
of the two standard forms.

'defined' without an identifier.

 MISRA C:2004 and MISRA AC AGC Coding Rules

5-29

N. MISRA Definition Messages in report file Polyspace Implementation
19.15 Precautions shall be taken in

order to prevent the contents of a
header file being included twice.

Precautions shall be taken in
order to prevent multiple
inclusions.

When a header file is formatted
as,

#ifndef <control macro>
#define <control macro>
<contents> #endif

or,

#ifndef <control macro>
#error ...
#else
#define <control macro>
<contents> #endif

it is assumed that precautions
have been taken to prevent
multiple inclusions. Otherwise, a
violation of this MISRA rule is
detected.

19.16 Preprocessing directives shall be
syntactically meaningful even
when excluded by the
preprocessor.

directive is not syntactically
meaningful.

19.17 All #else, #elif and #endif
preprocessor directives shall
reside in the same file as the #if
or #ifdef directive to which they
are related.

• '#elif' not within a
conditional.

• '#else' not within a
conditional.

• '#elif' not within a
conditional.

• '#endif' not within a
conditional.

• unbalanced '#endif'.
• unterminated '#if' conditional.
• unterminated '#ifdef'

conditional.
• unterminated '#ifndef'

conditional.

Standard Libraries

N. MISRA Definition Messages in report file Polyspace Implementation
20.1 Reserved identifiers, macros and

functions in the standard library,
shall not be defined, redefined or
undefined.

• The macro '<name> shall not
be redefined.

• The macro '<name> shall not
be undefined.

5 Coding Rule Sets and Concepts

5-30

N. MISRA Definition Messages in report file Polyspace Implementation
20.2 The names of standard library

macros, objects and functions
shall not be reused.

Identifier XX should not be used. In case a macro whose name
corresponds to a standard library
macro, object or function is
defined, the rule that is detected
as violated is 20.1.

Tentative definitions are
considered as definitions. For
objects with file scope, tentative
definitions are declarations that:

• Do not have initializers.
• Do not have storage class
specifiers, or have the static
specifier

20.3 The validity of values passed to
library functions shall be
checked.

Validity of values passed to
library functions shall be checked

Warning for argument in library
function call if the following are
all true:

• Argument is a local variable
• Local variable is not tested

between last assignment and
call to the library function

• Library function is a common
mathematical function

• Corresponding parameter of
the library function has a
restricted input domain.

The library function can be one of
the following : sqrt, tan, pow,
log, log10, fmod, acos, asin,
acosh, atanh, or atan2.

Bug Finder and Code Prover
check this rule differently. The
analysis can produce different
results.

20.4 Dynamic heap memory allocation
shall not be used.

• The macro '<name> shall not
be used.

• Identifier XX should not be
used.

In case the dynamic heap
memory allocation functions are
actually macros and the macro is
expanded in the code, this rule is
detected as violated. Assumes
rule 20.2 is not violated.

20.5 The error indicator errno shall
not be used

The error indicator errno shall
not be used

Assumes that rule 20.2 is not
violated

 MISRA C:2004 and MISRA AC AGC Coding Rules

5-31

N. MISRA Definition Messages in report file Polyspace Implementation
20.6 The macro offsetof, in library

<stddef.h>, shall not be used.
• The macro '<name> shall not

be used.
• Identifier XX should not be

used.

Assumes that rule 20.2 is not
violated

20.7 The setjmp macro and the
longjmp function shall not be
used.

• The macro '<name> shall not
be used.

• Identifier XX should not be
used.

In case the longjmp function is
actually a macro and the macro is
expanded in the code, this rule is
detected as violated. Assumes
that rule 20.2 is not violated

20.8 The signal handling facilities of
<signal.h> shall not be used.

• The macro '<name> shall not
be used.

• Identifier XX should not be
used.

In case some of the signal
functions are actually macros and
are expanded in the code, this
rule is detected as violated.
Assumes that rule 20.2 is not
violated

20.9 The input/output library
<stdio.h> shall not be used in
production code.

• The macro '<name> shall not
be used.

• Identifier XX should not be
used.

In case the input/output library
functions are actually macros and
are expanded in the code, this
rule is detected as violated.
Assumes that rule 20.2 is not
violated

20.10 The library functions atof, atoi
and atoll from library <stdlib.h>
shall not be used.

• The macro '<name> shall not
be used.

• Identifier XX should not be
used.

In case the atof, atoi and atoll
functions are actually macros and
are expanded, this rule is
detected as violated. Assumes
that rule 20.2 is not violated

20.11 The library functions abort, exit,
getenv and system from library
<stdlib.h> shall not be used.

• The macro '<name> shall not
be used.

• Identifier XX should not be
used.

In case the abort, exit, getenv
and system functions are actually
macros and are expanded, this
rule is detected as violated.
Assumes that rule 20.2 is not
violated

20.12 The time handling functions of
library <time.h> shall not be
used.

• The macro '<name> shall not
be used.

• Identifier XX should not be
used.

In case the time handling
functions are actually macros and
are expanded, this rule is
detected as violated. Assumes
that rule 20.2 is not violated

5 Coding Rule Sets and Concepts

5-32

Runtime Failures

N. MISRA Definition Messages in report file Polyspace Implementation
21.1 Minimization of runtime failures

shall be ensured by the use of at
least one of:

• static verification tools/
techniques;

• dynamic verification tools/
techniques;

• explicit coding of checks to
handle runtime faults.

 Done by Polyspace. Bug Finder
and Code Prover check this
coding rule differently. The
analyses can produce different
results.

In Code Prover, you can also see
a difference in results based on
your choice for the option
Verification level (-to).
See .the documentation for
Polyspace Code Prover or
Polyspace Code Prover Server for
more on analysis options and how
to check for coding standard
violations..

Unsupported MISRA C:2004 and MISRA AC AGC Rules
The Polyspace coding rules checker does not check the following MISRA C:2004 coding rules. These
rules cannot be enforced because they are outside the scope of Polyspace software. They may
concern documentation, dynamic aspects, or functional aspects of MISRA rules. The Additional
Information column describes the reason each rule is not checked.

Environment

Rule Description Additional Information
1.2 (Required) No reliance shall be placed on undefined or

unspecified behavior
Not statically checkable unless the data
dynamic properties is taken into account

1.3 (Required) Multiple compilers and/or languages shall
only be used if there is a common defined
interface standard for object code to which
the language/compilers/assemblers conform.

It is a process rule method.

1.4 (Required) The compiler/linker/Identifiers (internal and
external) shall not rely on significance of
more than 31 characters. Furthermore the
compiler/linker shall be checked to ensure
that 31 character significance and case
sensitivity are supported for external
identifiers.

To observe this rule, check your compiler
documentation.

1.5 (Advisory) Floating point implementations should
comply with a defined floating point
standard.

To observe this rule, check your compiler
documentation.

 MISRA C:2004 and MISRA AC AGC Coding Rules

5-33

Language Extensions

Rule Description Additional Information
2.4 (Advisory) Sections of code should not be “commented

out”
One way a tool can check this rule is to
determine if the code compiles when
commented out sections are uncommented.
However, such checking can be expensive
and inaccurate.

Documentation

Rule Description Additional Information
3.1 (Required) All usage of implementation-defined

behavior shall be documented.
To observe this rule, check your compiler
documentation. Error detection is based on
undefined behavior, according to choices
made for implementation- defined
constructions.

3.2 (Required) The character set and the corresponding
encoding shall be documented.

To observe this rule, check your compiler
documentation.

3.3 (Advisory) The implementation of integer division in the
chosen compiler should be determined,
documented and taken into account.

To observe this rule, check your compiler
documentation.

3.5 (Required) The implementation-defined behavior and
packing of bitfields shall be documented if
being relied upon.

To observe this rule, check your compiler
documentation.

3.6 (Required) All libraries used in production code shall be
written to comply with the provisions of this
document, and shall have been subject to
appropriate validation.

To observe this rule, check your compiler
documentation.

Structures and Unions

Rule Description Additional Information
18.3 (Required) An area of memory shall not be reused for

unrelated purposes.
"purpose" is functional design issue.

5 Coding Rule Sets and Concepts

5-34

Polyspace MISRA C:2012 Checkers
The Polyspace MISRA C:2012 checker helps you to comply with the MISRA C 2012 coding standard.2

When MISRA C:2012 guidelines are violated, the Polyspace MISRA C:2012 checker provides
messages with information about the violated rule or directive. Most violations are found during the
compile phase of an analysis.

Polyspace Bug Finder can check all the MISRA C:2012 rules and most MISRA C:2012 directives.
Polyspace Code Prover does not support checking of the following:

• MISRA C:2012 Dir 4.7, 4.13 and 4.14
• MISRA C:2012 Rule 21.13, 21.14, and 21.17 - 21.20
• MISRA C:2012 Rule 22.1 - 22.4 and 22.6 - 22.10

Each guideline is categorized into one of these three categories: mandatory, required, or advisory.
When you set up rule checking, you can select subsets of these categories to check. For automatically
generated code, some rules change categories, including to one additional category: readability. The
Use generated code requirements (-misra3-agc-mode) option activates the categorization
for automatically generated code. For more on analysis options, see the documentation for Polyspace
Code Prover or Polyspace Code Prover Server .

There are additional subsets of MISRA C:2012 guidelines defined by Polyspace called Software
Quality Objectives (SQO) that can have a direct or indirect impact on the precision of your results.
When you set up checking, you can select these subsets. These subsets are defined in “Software
Quality Objective Subsets (C:2012)” on page 1-77.

See Also

See Also

More About
• “MISRA C:2012 Directives and Rules”

2. MISRA and MISRA C are registered trademarks of MIRA Ltd., held on behalf of the MISRA Consortium.

 Polyspace MISRA C:2012 Checkers

5-35

Essential Types in MISRA C: 2012 Rules 10.x
MISRA C: 2012 rules 10.x classify data types in categories. The rules treat data types in the same
category as essentially similar.

For instance, the data types float, double and long double are considered as essentially floating.
Rule 10.1 states that the % operation must not have essentially floating operands. This statement
implies that the operands cannot have one of these three data types: float, double and long
double.

Categories of Essential Types
The essential types fall in these categories:

Essential type category Standard types
Essentially Boolean bool or _Bool (defined in stdbool.h)

If you define a boolean type through a typedef, you must specify
this type name before coding rules checking. For more information,
see Effective boolean types (-boolean-types). For more
on analysis options, see the documentation for Polyspace Code
Prover or Polyspace Code Prover Server .

Essentially character char
Essentially enum named enum
Essentially signed signed char, signed short, signed int, signed long, signed long

long
Essentially unsigned unsigned char, unsigned short, unsigned int, unsigned long,

unsigned long long
Essentially floating float, double, long double

How MISRA C: 2012 Uses Essential Types
These rules use essential types in their statements:

• MISRA C:2012 Rule 10.1: Operands shall not be of an inappropriate essential type.

For instance, the right operand of the << or >> operator must be essentially unsigned. Otherwise,
negative values can cause undefined behavior.

• MISRA C:2012 Rule 10.2: Expressions of essentially character type shall not be used
inappropriately in addition and subtraction operations.

For instance, the type char does not represent numeric values. Do not use a variable of this type
in addition and subtraction operations.

• MISRA C:2012 Rule 10.3: The value of an expression shall not be assigned to an object with a
narrower essential type or of a different essential type category.

For instance, do not assign a variable of data type double to a variable with the narrower data
type float.

5 Coding Rule Sets and Concepts

5-36

• MISRA C:2012 Rule 10.4: Both operands of an operator in which the usual arithmetic
conversions are performed shall have the same essential type category.

For instance, do not perform an addition operation with a signed int operand, which belongs to
the essentially signed category, and an unsigned int operand, which belongs to the essentially
unsigned category.

• MISRA C:2012 Rule 10.5: The value of an expression should not be cast to an inappropriate
essential type.

For instance, do not perform a cast between essentially floating types and essentially character
types.

• MISRA C:2012 Rule 10.6: The value of a composite expression shall not be assigned to an
object with wider essential type.

For instance, if a multiplication, binary addition or bitwise operation involves unsigned char
operands, do not assign the result to a variable having the wider type unsigned int.

• MISRA C:2012 Rule 10.7: If a composite expression is used as one operand of an operator in
which the usual arithmetic conversions are performed then the other operand shall not have wider
essential type.

For instance, if one operand of an addition operation is a composite expression with two unsigned
char operands, the other operand must not have the wider type unsigned int.

See Also

More About
• “MISRA C:2012 Directives and Rules”

 Essential Types in MISRA C: 2012 Rules 10.x

5-37

Unsupported MISRA C:2012 Guidelines
The Polyspace coding rules checker does not check the following MISRA C:2012 directives. These
directives are not checked either in Bug Finder or Code Prover. These directives cannot be enforced
because they are outside the scope of Polyspace software. These guidelines concern documentation,
dynamic aspects, or functional aspects of MISRA rules.

For the list of supported rules and directives, see “MISRA C:2012 Directives and Rules”.

Number Category AGC
Category

Definition

Directive
3.1

Required Required All code shall be traceable to documented requirements

Directive
4.2

Advisory Advisory All usage of assembly language should be documented

Directive
4.4

Advisory Advisory Sections of code should not be “commented out”

See Also

More About
• “MISRA C:2012 Directives and Rules”

5 Coding Rule Sets and Concepts

5-38

Polyspace MISRA C++ Checkers
The Polyspace MISRA C++ checker helps you comply with the MISRA C++:2008 coding standard.3

When MISRA C++ rules are violated, the Polyspace software provides messages with information
about why the code violates the rule. Most violations are found during the compile phase of an
analysis. The MISRA C++ checker can check 202 of the 230 MISRA C++ coding rules.

There are subsets of MISRA C++ coding rules that can have a direct or indirect impact on the
selectivity (reliability percentage) of your results. When you set up rule checking, you can select
these subsets directly. These subsets are defined in “Software Quality Objective Subsets (C++)” on
page 1-83.

Note The Polyspace MISRA C++ checker is based on MISRA C++:2008 – “Guidelines for the use of
the C++ language in critical systems."

See Also

More About
• “MISRA C++:2008 Rules”

3. MISRA is a registered trademark of MIRA Ltd., held on behalf of the MISRA Consortium.

 Polyspace MISRA C++ Checkers

5-39

Unsupported MISRA C++ Coding Rules

In this section...
“Language Independent Issues” on page 5-40
“General” on page 5-41
“Lexical Conventions” on page 5-41
“Expressions” on page 5-41
“Declarations” on page 5-42
“Classes” on page 5-42
“Templates” on page 5-42
“Exception Handling” on page 5-42
“Library Introduction” on page 5-43

Polyspace does not check the following MISRAC++ coding rules. These rules are not checked either
in Bug Finder or Code Prover. Some of these rules cannot be enforced because they are outside the
scope of Polyspace software. The rules concern documentation, dynamic aspects, or functional
aspects of MISRA rules.

For the list of supported rules, see “MISRA C++:2008 Rules”.

Language Independent Issues
N. Category MISRA Definition Additional Information
0-1-4 Required A project shall not contain non-volatile

POD variables having only one use.

0-1-6 Required A project shall not contain instances of
non-volatile variables being given values
that are never subsequently used.

0-1-8 Required All functions with void return type shall
have external side effects.

0-3-1 Required Minimization of run-time failures shall be
ensured by the use of at least one of: (a)
static analysis tools/techniques; (b)
dynamic analysis tools/techniques; (c)
explicit coding of checks to handle run-
time faults.

0-3-2 Required If a function generates error information,
then that error information shall be
tested.

0-4-1 Document Use of scaled-integer or fixed-point
arithmetic shall be documented.

To observe this rule, check your
compiler documentation.

0-4-2 Document Use of floating-point arithmetic shall be
documented.

To observe this rule, check your
compiler documentation.

5 Coding Rule Sets and Concepts

5-40

N. Category MISRA Definition Additional Information
0-4-3 Document Floating-point implementations shall

comply with a defined floating-point
standard.

To observe this rule, check your
compiler documentation.

General
N. Category MISRA Definition Additional Information
1-0-2 Document Multiple compilers shall only be used if

they have a common, defined interface.
To observe this rule, check your
compiler documentation.

1-0-3 Document The implementation of integer division in
the chosen compiler shall be determined
and documented.

To observe this rule, check your
compiler documentation.

Lexical Conventions
N. Category MISRA Definition Additional Information
2-2-1 Document The character set and the corresponding

encoding shall be documented.
To observe this rule, check your
compiler documentation.

2-7-2 Required Sections of code shall not be "commented
out" using C-style comments.

One way a tool can check this rule is to
determine if the code compiles when
commented out sections are
uncommented. However, such checking
can be expensive and inaccurate.

2-7-3 Advisory Sections of code should not be
"commented out" using C++ comments.

One way a tool can check this rule is to
determine if the code compiles when
commented out sections are
uncommented. However, such checking
can be expensive and inaccurate.

Expressions
N. Category MISRA Definition Additional Information
5-0-16 Required A pointer operand and any pointer

resulting from pointer arithmetic using
that operand shall both address elements
of the same array.

5-17-1 Required The semantic equivalence between a
binary operator and its assignment
operator form shall be preserved.

 Unsupported MISRA C++ Coding Rules

5-41

Declarations
N. MISRA Definition Additional Information
7-2-1 Required An expression with enum underlying type

shall only have values corresponding to
the enumerators of the enumeration.

7-4-1 Document All usage of assembler shall be
documented.

To observe this rule, check your
compiler documentation.

Classes
N. Category MISRA Definition Additional Information
9-6-1 Document When the absolute positioning of bits

representing a bit-field is required, then
the behavior and packing of bit-fields
shall be documented.

To observe this rule, check your
compiler documentation.

Templates
N. MISRA Definition Additional Information
14-5-1 Required A non-member generic function shall only

be declared in a namespace that is not an
associated namespace.

14-7-1 Required All class templates, function templates,
class template member functions and
class template static members shall be
instantiated at least once.

14-7-2 Required For any given template specialization, an
explicit instantiation of the template with
the template-arguments used in the
specialization shall not render the
program ill-formed.

Exception Handling
N. Category MISRA Definition Additional Information
15-0-1 Document Exceptions shall only be used for error

handling.
To observe this rule, check your
compiler documentation.

15-1-1 Required The assignment-expression of a throw
statement shall not itself cause an
exception to be thrown.

15-3-1 Required Exceptions shall be raised only after
start-up and before termination of the
program.

5 Coding Rule Sets and Concepts

5-42

N. Category MISRA Definition Additional Information
15-3-4 Required Each exception explicitly thrown in the

code shall have a handler of a compatible
type in all call paths that could lead to
that point.

Library Introduction
N. Category MISRA Definition Additional Information
17-0-3 Required The names of standard library functions

shall not be overridden.

17-0-4 Required All library code shall conform to MISRA
C++.

To observe this rule, check your
compiler documentation.

See Also

More About
• “MISRA C++:2008 Rules”

 Unsupported MISRA C++ Coding Rules

5-43

Polyspace JSF C++ Checkers
The Polyspace JSF C++ checker helps you comply with the Joint Strike Fighter® Air Vehicle C++
coding standards (JSF++). These coding standards were developed by Lockheed Martin® for the Joint
Strike Fighter program. They are designed to improve the robustness of C++ code, and improve
maintainability.

4

When JSF++ rules are violated, the Polyspace JSF C++ checker enables Polyspace software to
provide messages with information about the rule violations. Most messages are reported during the
compile phase of an analysis.

Note The Polyspace JSF C++ checker is based on JSF++:2005.

See Also

4. JSF and Joint Strike Fighter are Lockheed Martin.

5 Coding Rule Sets and Concepts

5-44

JSF C++ Coding Rules

Supported JSF C++ Coding Rules
Code Size and Complexity

N. JSF++ Definition Polyspace Implementation
1 Any one function (or method) will contain no more

than 200 logical source lines of code (L-SLOCs).
Message in report file:

<function name> has <num> logical source lines
of code.

3 All functions shall have a cyclomatic complexity
number of 20 or less.

Message in report file:

<function name> has cyclomatic complexity
number equal to <num>.

Environment

N. JSF++ Definition Polyspace Implementation
8 All code shall conform to ISO/IEC 14882:2002(E)

standard C++.
Reports the compilation error message

9 Only those characters specified in the C++ basic
source character set will be used.

11 Trigraphs will not be used.
12 The following digraphs will not be used: <%, %>,

<:, :>, %:, %:%:.
Message in report file:

The following digraph will not be used:
<digraph>.

Reports the digraph. If the rule level is set to
warning, the digraph will be allowed even if it is
not supported in -compiler iso.

13 Multi-byte characters and wide string literals will
not be used.

Report L'c', L"string", and use of wchar_t.

14 Literal suffixes shall use uppercase rather than
lowercase letters.

15 Provision shall be made for run-time checking
(defensive programming).

Done with checks in the software.

Libraries

N. JSF++ Definition Polyspace Implementation
17 The error indicator errno shall not be used. errno should not be used as a macro or a global

with external "C" linkage.
18 The macro offsetof, in library <stddef.h>,

shall not be used.
offsetof should not be used as a macro or a
global with external "C" linkage.

 JSF C++ Coding Rules

5-45

N. JSF++ Definition Polyspace Implementation
19 <locale.h> and the setlocale function shall

not be used.
setlocale and localeconv should not be used
as a macro or a global with external "C" linkage.

20 The setjmp macro and the longjmp function
shall not be used.

setjmp and longjmp should not be used as a
macro or a global with external "C" linkage.

21 The signal handling facilities of <signal.h>
shall not be used.

signal and raise should not be used as a macro
or a global with external "C" linkage.

22 The input/output library <stdio.h> shall not be
used.

all standard functions of <stdio.h> should not
be used as a macro or a global with external "C"
linkage.

23 The library functions atof, atoi and atol from
library <stdlib.h> shall not be used.

atof, atoi and atol should not be used as a
macro or a global with external "C" linkage.

24 The library functions abort, exit, getenv and
system from library <stdlib.h> shall not be
used.

abort, exit, getenv and system should not be
used as a macro or a global with external "C"
linkage.

25 The time handling functions of library <time.h>
shall not be used.

clock, difftime, mktime, asctime, ctime,
gmtime, localtime and strftime should not be
used as a macro or a global with external "C"
linkage.

Pre-Processing Directives

N. JSF++ Definition Polyspace Implementation
26 Only the following preprocessor directives shall

be used: #ifndef, #define, #endif,
#include.

27 #ifndef, #define and #endif will be used to
prevent multiple inclusions of the same header
file. Other techniques to prevent the multiple
inclusions of header files will not be used.

Detects the patterns #if !defined, #pragma
once, #ifdef, and missing #define.

28 The #ifndef and #endif preprocessor directives
will only be used as defined in AV Rule 27 to
prevent multiple inclusions of the same header
file.

Detects any use that does not comply with AV Rule
27. Assuming 35/27 is not violated, reports only
#ifndef.

29 The #define preprocessor directive shall not be
used to create inline macros. Inline functions shall
be used instead.

Rule is split into two parts: the definition of a
macro function (29.def) and the call of a
macrofunction (29.use).

Messages in report file:

• 29.1 : The #define preprocessor directive
shall not be used to create inline macros.

• 29.2 : Inline functions shall be used instead of
inline macros.

5 Coding Rule Sets and Concepts

5-46

N. JSF++ Definition Polyspace Implementation
30 The #define preprocessor directive shall not be

used to define constant values. Instead, the const
qualifier shall be applied to variable declarations
to specify constant values.

Reports #define of simple constants.

31 The #define preprocessor directive will only be
used as part of the technique to prevent multiple
inclusions of the same header file.

Detects use of #define that are not used to guard
for multiple inclusion, assuming that rules 35 and
27 are not violated.

32 The #include preprocessor directive will only be
used to include header (*.h) files.

Header Files

N. JSF++ Definition Polyspace Implementation
33 The #include directive shall use the

<filename.h> notation to include header files.

35 A header file will contain a mechanism that
prevents multiple inclusions of itself.

39 Header files (*.h) will not contain non-const
variable definitions or function definitions.

Reports definitions of global variables / function in
header.

Style

N. JSF++ Definition Polyspace Implementation
40 Every implementation file shall include the header

files that uniquely define the inline functions,
types, and templates used.

Reports when type, template, or inline function is
defined in source file.

Bug Finder and Code Prover check this coding
rule differently. The analyses can produce
different results.

41 Source lines will be kept to a length of 120
characters or less.

42 Each expression-statement will be on a separate
line.

Reports when two consecutive expression
statements are on the same line (unless the
statements are part of a macro definition).

43 Tabs should be avoided.
44 All indentations will be at least two spaces and be

consistent within the same source file.
Reports when a statement indentation is not at
least two spaces more than the statement
containing it. Does not report bad indentation
between opening braces following if/else, do/
while, for, and while statements. NB: in final
release it will accept any indentation

46 User-specified identifiers (internal and external)
will not rely on significance of more than 64
characters.

47 Identifiers will not begin with the underscore
character '_'.

 JSF C++ Coding Rules

5-47

N. JSF++ Definition Polyspace Implementation
48 Identifiers will not differ by:

• Only a mixture of case
• The presence/absence of the underscore

character
• The interchange of the letter 'O'; with the

number '0' or the letter 'D'
• The interchange of the letter 'I'; with the

number '1' or the letter 'l'
• The interchange of the letter 'S' with the

number '5'
• The interchange of the letter 'Z' with the

number 2
• The interchange of the letter 'n' with the letter

'h'

Checked regardless of scope. Not checked
between macros and other identifiers.

Messages in report file:

• Identifier Idf1 (file1.cpp line l1
column c1) and Idf2 (file2.cpp line l2
column c2) only differ by the presence/
absence of the underscore character.

• Identifier Idf1 (file1.cpp line l1
column c1) and Idf2 (file2.cpp line l2
column c2) only differ by a mixture of case.

• Identifier Idf1 (file1.cpp line l1
column c1) and Idf2 (file2.cpp line l2
column c2) only differ by letter O, with the
number 0.

50 The first word of the name of a class, structure,
namespace, enumeration, or type created with
typedef will begin with an uppercase letter. All
others letters will be lowercase.

Messages in report file:

• The first word of the name of a class will begin
with an uppercase letter.

• The first word of the namespace of a class will
begin with an uppercase letter.

Bug Finder and Code Prover check this coding
rule differently. The analyses can produce
different results.

51 All letters contained in function and variables
names will be composed entirely of lowercase
letters.

Messages in report file:

• All letters contained in variable names will be
composed entirely of lowercase letters.

• All letters contained in function names will be
composed entirely of lowercase letters.

52 Identifiers for constant and enumerator values
shall be lowercase.

Messages in report file:

• Identifier for enumerator value shall be
lowercase.

• Identifier for template constant parameter
shall be lowercase.

53 Header files will always have file name extension
of ".h".

.H is allowed if you set the option -dos.

53.1 The following character sequences shall not
appear in header file names: ', \, /*, //, or ".

54 Implementation files will always have a file name
extension of ".cpp".

Not case sensitive if you set the option -dos.

57 The public, protected, and private sections of a
class will be declared in that order.

5 Coding Rule Sets and Concepts

5-48

N. JSF++ Definition Polyspace Implementation
58 When declaring and defining functions with more

than two parameters, the leading parenthesis and
the first argument will be written on the same line
as the function name. Each additional argument
will be written on a separate line (with the closing
parenthesis directly after the last argument).

Detects that two parameters are not on the same
line, The first parameter should be on the same
line as function name. Does not check for the
closing parenthesis.

59 The statements forming the body of an if, else if,
else, while, do ... while or for statement shall
always be enclosed in braces, even if the braces
form an empty block.

Messages in report file:

• The statements forming the body of an if
statement shall always be enclosed in braces.

• The statements forming the body of an else
statement shall always be enclosed in braces.

• The statements forming the body of a while
statement shall always be enclosed in braces.

• The statements forming the body of a do ...
while statement shall always be enclosed in
braces.

• The statements forming the body of a for
statement shall always be enclosed in braces.

60 Braces ("{}") which enclose a block will be placed
in the same column, on separate lines directly
before and after the block.

Detects that statement-block braces should be in
the same columns.

61 Braces ("{}") which enclose a block will have
nothing else on the line except comments.

62 The dereference operator ‘*’ and the address-of
operator ‘&’ will be directly connected with the
type-specifier.

Reports when there is a space between type and
"*" "&" for variables, parameters and fields
declaration.

63 Spaces will not be used around ‘.’ or ‘->’, nor
between unary operators and operands.

Reports when the following characters are not
directly connected to a white space:

• .
• ->
• !
• ~
• -
• ++
• —

Note that a violation will be reported for “.” used
in float/double definition.

 JSF C++ Coding Rules

5-49

Classes

N. JSF++ Definition Polyspace Implementation
67 Public and protected data should only be used in

structs - not classes.

68 Unneeded implicitly generated member functions
shall be explicitly disallowed.

Reports when default constructor, assignment
operator, copy constructor or destructor is not
declared.

71.1 A class’s virtual functions shall not be invoked
from its destructor or any of its constructors.

Reports when a constructor or destructor directly
calls a virtual function.

74 Initialization of nonstatic class members will be
performed through the member initialization list
rather than through assignment in the body of a
constructor.

All data should be initialized in the initialization
list except for array. Does not report that an
assignment exists in ctor body.

Message in report file:

Initialization of nonstatic class members
"<field>" will be performed through the member
initialization list.

75 Members of the initialization list shall be listed in
the order in which they are declared in the class.

76 A copy constructor and an assignment operator
shall be declared for classes that contain pointers
to data items or nontrivial destructors.

Messages in report file:

• no copy constructor and no copy
assign

• no copy constructor
• no copy assign

Bug Finder and Code Prover check this coding
rule differently. The analyses can produce
different results.

77.1 The definition of a member function shall not
contain default arguments that produce a
signature identical to that of the implicitly-
declared copy constructor for the corresponding
class/structure.

Does not report when an explicit copy constructor
exists.

78 All base classes with a virtual function shall
define a virtual destructor.

79 All resources acquired by a class shall be released
by the class’s destructor.

Reports when the number of “new” called in a
constructor is greater than the number of “delete”
called in its destructor.

Note A violation is raised even if “new” is done in
a “if/else”.

5 Coding Rule Sets and Concepts

5-50

N. JSF++ Definition Polyspace Implementation
81 The assignment operator shall handle self-

assignment correctly
Reports when copy assignment body does not
begin with “if (this != arg)”

A violation is not raised if an empty else
statement follows the if, or the body contains
only a return statement.

A violation is raised when the if statement is
followed by a statement other than the return
statement.

82 An assignment operator shall return a reference
to *this.

The following operators should return *this on
method, and *first_arg on plain function:

• operator=
• operator+=
• operator-=
• operator*=
• operator >>=
• operator <<=
• operator /=
• operator %=
• operator |=
• operator &=
• operator ^=
• Prefix operator++
• Prefix operator--

Does not report when no return exists.

No special message if type does not match.

Messages in report file:

• An assignment operator shall return a
reference to *this.

• An assignment operator shall return a
reference to its first arg.

83 An assignment operator shall assign all data
members and bases that affect the class invariant
(a data element representing a cache, for
example, would not need to be copied).

Reports when a copy assignment does not assign
all data members. In a derived class, it also
reports when a copy assignment does not call
inherited copy assignments.

 JSF C++ Coding Rules

5-51

N. JSF++ Definition Polyspace Implementation
88 Multiple inheritance shall only be allowed in the

following restricted form: n interfaces plus m
private implementations, plus at most one
protected implementation.

Messages in report file:

• Multiple inheritance on public implementation
shall not be allowed: <public_base_class>
is not an interface.

• Multiple inheritance on protected
implementation shall not be allowed :
<protected_base_class_1>.

• <protected_base_class_2> are not
interfaces.

88.1 A stateful virtual base shall be explicitly declared
in each derived class that accesses it.

89 A base class shall not be both virtual and
nonvirtual in the same hierarchy.

94 An inherited nonvirtual function shall not be
redefined in a derived class.

Does not report for destructor.

Message in report file:

Inherited nonvirtual function %s shall not be
redefined in a derived class.

95 An inherited default parameter shall never be
redefined.

96 Arrays shall not be treated polymorphically. Reports pointer arithmetic and array like access
on expressions whose pointed type is used as a
base class.

97 Arrays shall not be used in interface. Only to prevent array-to-pointer-decay. Not
checked on private methods

97.1 Neither operand of an equality operator (== or !=)
shall be a pointer to a virtual member function.

Reports == and != on pointer to member function
of polymorphic classes (cannot determine
statically if it is virtual or not), except when one
argument is the null constant.

Namespaces

N. JSF++ Definition Polyspace Implementation
98 Every nonlocal name, except main(), should be

placed in some namespace.
Bug Finder and Code Prover check this coding
rule differently. The analyses can produce
different results.

99 Namespaces will not be nested more than two
levels deep.

Templates

N. JSF++ Definition Polyspace Implementation
104 A template specialization shall be declared before

its use.
Reports the actual compilation error message.

5 Coding Rule Sets and Concepts

5-52

Functions

N. JSF++ Definition Polyspace Implementation
107 Functions shall always be declared at file scope.
108 Functions with variable numbers of arguments

shall not be used.

109 A function definition should not be placed in a
class specification unless the function is intended
to be inlined.

Reports when "inline" is not in the definition of a
member function inside the class definition.

110 Functions with more than 7 arguments will not
be used.

111 A function shall not return a pointer or reference
to a non-static local object.

Simple cases without alias effect detected.

113 Functions will have a single exit point. Reports first return, or once per function.
114 All exit points of value-returning functions shall

be through return statements.

116 Small, concrete-type arguments (two or three
words in size) should be passed by value if
changes made to formal parameters should not be
reflected in the calling function.

Report constant parameters references with
sizeof <= 2 * sizeof(int). Does not report
for copy-constructor.

119 Functions shall not call themselves, either
directly or indirectly (i.e. recursion shall not be
allowed).

The checker reports each function that calls itself,
directly or indirectly. Even if several functions are
involved in one recursion cycle, each function is
individually reported.

You can calculate the total number of recursion
cycles using the code complexity metric Number
of Recursions. Note that unlike the checker,
the metric also considers implicit calls, for
instance, to compiler-generated constructors
during object creation.

121 Only functions with 1 or 2 statements should be
considered candidates for inline functions.

Reports inline functions with more than 2
statements.

Comments

N. JSF++ Definition Polyspace Implementation
126 Only valid C++ style comments (//) shall be

used.

133 Every source file will be documented with an
introductory comment that provides information
on the file name, its contents, and any program-
required information (e.g. legal statements,
copyright information, etc).

Reports when a file does not begin with two
comment lines.

Note: This rule cannot be annotated in the source
code.

 JSF C++ Coding Rules

5-53

Declarations and Definitions

N. JSF++ Definition Polyspace Implementation
135 Identifiers in an inner scope shall not use the

same name as an identifier in an outer scope, and
therefore hide that identifier.

Bug Finder and Code Prover check this coding
rule differently. The analyses can produce
different results.

136 Declarations should be at the smallest feasible
scope.

Reports when:

• A global variable is used in only one function.
• A local variable is not used in a statement

(expr, return, init …) of the same level of
its declaration (in the same block) or is not
used in two sub-statements of its declaration.

Note

• Non-used variables are reported.
• Initializations at definition are ignored (not

considered an access)

137 All declarations at file scope should be static
where possible.

138 Identifiers shall not simultaneously have both
internal and external linkage in the same
translation unit.

139 External objects will not be declared in more than
one file.

Reports all duplicate declarations inside a
translation unit. Reports when the declaration
localization is not the same in all translation
units.

140 The register storage class specifier shall not be
used.

141 A class, structure, or enumeration will not be
declared in the definition of its type.

Initialization

N. JSF++ Definition Polyspace Implementation
142 All variables shall be initialized before use. Done with Non-initialized variable checks in the

software.
144 Braces shall be used to indicate and match the

structure in the non-zero initialization of arrays
and structures.

This covers partial initialization.

145 In an enumerator list, the '=' construct shall not
be used to explicitly initialize members other than
the first, unless all items are explicitly initialized.

Generates one report for an enumerator list.

5 Coding Rule Sets and Concepts

5-54

Types

N. JSF++ Definition Polyspace Implementation
147 The underlying bit representations of floating

point numbers shall not be used in any way by
the programmer.

Reports on casts with float pointers (except with
void*).

148 Enumeration types shall be used instead of
integer types (and constants) to select from a
limited series of choices.

Reports when non enumeration types are used in
switches.

Constants

N. JSF++ Definition Polyspace Implementation
149 Octal constants (other than zero) shall not be

used.

150 Hexadecimal constants will be represented using
all uppercase letters.

151 Numeric values in code will not be used; symbolic
values will be used instead.

Reports direct numeric constants (except integer/
float value 1, 0) in expressions, non -const
initializations. and switch cases. char constants
are allowed. Does not report on templates non-
type parameter.

Bug Finder and Code Prover check this coding
rule differently. The analyses can produce
different results.

151.1 A string literal shall not be modified. The rule checker flags assignment of string
literals to:

• Pointers other than pointers to const objects.
• Arrays that are not const-qualified.

Variables

N. JSF++ Definition Polyspace Implementation
152 Multiple variable declarations shall not be

allowed on the same line.
Reports when two consecutive declaration
statements are on the same line (unless the
statements are part of a macro definition).

Unions and Bit Fields

N. JSF++ Definition Polyspace Implementation
153 Unions shall not be used.
154 Bit-fields shall have explicitly unsigned integral or

enumeration types only.

156 All the members of a structure (or class) shall be
named and shall only be accessed via their names.

Reports unnamed bit-fields (unnamed fields are
not allowed).

 JSF C++ Coding Rules

5-55

Operators

N. JSF++ Definition Polyspace Implementation
157 The right hand operand of a && or || operator

shall not contain side effects.
Assumes rule 159 is not violated.

Messages in report file:

• The right hand operand of a && operator shall
not contain side effects.

• The right hand operand of a || operator shall
not contain side effects.

158 The operands of a logical && or || shall be
parenthesized if the operands contain binary
operators.

Messages in report file:

• The operands of a logical && shall be
parenthesized if the operands contain binary
operators.

• The operands of a logical || shall be
parenthesized if the operands contain binary
operators.

Exception for: X || Y || Z , Z&&Y &&Z
159 Operators ||, &&, and unary & shall not be

overloaded.
Messages in report file:

• Unary operator & shall not be overloaded.
• Operator || shall not be overloaded.
• Operator && shall not be overloaded.

160 An assignment expression shall be used only as
the expression in an expression statement.

Only simple assignment, not +=, ++, etc.

162 Signed and unsigned values shall not be mixed in
arithmetic or comparison operations.

163 Unsigned arithmetic shall not be used.
164 The right hand operand of a shift operator shall

lie between zero and one less than the width in
bits of the left-hand operand (inclusive).

164.1 The left-hand operand of a right-shift operator
shall not have a negative value.

Detects constant case +. Found by the software for
dynamic cases.

165 The unary minus operator shall not be applied to
an unsigned expression.

166 The sizeof operator will not be used on
expressions that contain side effects.

168 The comma operator shall not be used.

Pointers and References

N. JSF++ Definition Polyspace Implementation
169 Pointers to pointers should be avoided when

possible.
Reports second-level pointers, except for
arguments of main.

5 Coding Rule Sets and Concepts

5-56

N. JSF++ Definition Polyspace Implementation
170 More than 2 levels of pointer indirection shall not

be used.
Only reports on variables/parameters.

171 Relational operators shall not be applied to
pointer types except where both operands are of
the same type and point to:

• the same object,
• the same function,
• members of the same object, or
• elements of the same array (including one past

the end of the same array).

Reports when relational operator are used on
pointer types (casts ignored).

173 The address of an object with automatic storage
shall not be assigned to an object which persists
after the object has ceased to exist.

174 The null pointer shall not be de-referenced. Done with checks in software.
175 A pointer shall not be compared to NULL or be

assigned NULL; use plain 0 instead.
Reports usage of NULL macro in pointer contexts.

176 A typedef will be used to simplify program
syntax when declaring function pointers.

Reports non-typedef function pointers, or
pointers to member functions for types of
variables, fields, parameters. Returns type of
function, cast, and exception specification.

Type Conversions

N. JSF++ Definition Polyspace Implementation
177 User-defined conversion functions should be

avoided.
Reports user defined conversion function, non-
explicit constructor with one parameter or default
value for others (even undefined ones).

Does not report copy-constructor.

Additional message for constructor case:

This constructor should be flagged as "explicit".
178 Down casting (casting from base to derived class)

shall only be allowed through one of the following
mechanism:

• Virtual functions that act like dynamic casts
(most likely useful in relatively simple cases).

• Use of the visitor (or similar) pattern (most
likely useful in complicated cases).

Reports explicit down casting, dynamic_cast
included. (Visitor patter does not have a special
case.)

179 A pointer to a virtual base class shall not be
converted to a pointer to a derived class.

Reports this specific down cast. Allows
dynamic_cast.

 JSF C++ Coding Rules

5-57

N. JSF++ Definition Polyspace Implementation
180 Implicit conversions that may result in a loss of

information shall not be used.
Reports the following implicit casts :

integer => smaller integer unsigned =>
smaller or eq signed signed => smaller
or eq un-signed integer => float float
=> integer

Does not report for cast to bool reports for
implicit cast on constant done with the option -
scalar-overflows-checks signed-and-
unsigned

Bug Finder and Code Prover check this coding
rule differently. The analyses can produce
different results.

181 Redundant explicit casts will not be used. Reports useless cast: cast T to T. Casts to
equivalent typedefs are also reported.

182 Type casting from any type to or from pointers
shall not be used.

Does not report when Rule 181 applies.

184 Floating point numbers shall not be converted to
integers unless such a conversion is a specified
algorithmic requirement or is necessary for a
hardware interface.

Reports float->int conversions. Does not
report implicit ones.

185 C++ style casts (const_cast,
reinterpret_cast, and static_cast) shall be
used instead of the traditional C-style casts.

Flow Control Standards

N. JSF++ Definition Polyspace Implementation
186 There shall be no unreachable code. Done with gray checks in the software.

Bug Finder and Code Prover check this coding
rule differently. The analyses can produce
different results.

187 All non-null statements shall potentially have a
side-effect.

188 Labels will not be used, except in switch
statements.

189 The goto statement shall not be used.
190 The continue statement shall not be used.
191 The break statement shall not be used (except to

terminate the cases of a switch statement).

192 All if, else if constructs will contain either a
final else clause or a comment indicating why a
final else clause is not necessary.

else if should contain an else clause.

5 Coding Rule Sets and Concepts

5-58

N. JSF++ Definition Polyspace Implementation
193 Every non-empty case clause in a switch

statement shall be terminated with a break
statement.

194 All switch statements that do not intend to test
for every enumeration value shall contain a final
default clause.

Reports only for missing default.

195 A switch expression will not represent a Boolean
value.

196 Every switch statement will have at least two
cases and a potential default.

197 Floating point variables shall not be used as loop
counters.

Assumes 1 loop parameter.

198 The initialization expression in a for loop will
perform no actions other than to initialize the
value of a single for loop parameter.

Reports if loop parameter cannot be determined.
Assumes Rule 200 is not violated. The loop
variable parameter is assumed to be a variable.

199 The increment expression in a for loop will
perform no action other than to change a single
loop parameter to the next value for the loop.

Assumes 1 loop parameter (Rule 198), with non
class type. Rule 200 must not be violated for this
rule to be reported.

200 Null initialize or increment expressions in for
loops will not be used; a while loop will be used
instead.

201 Numeric variables being used within a for loop for
iteration counting shall not be modified in the
body of the loop.

Assumes 1 loop parameter (AV rule 198), and no
alias writes.

Expressions

N. JSF++ Definition Polyspace Implementation
202 Floating point variables shall not be tested for

exact equality or inequality.
Reports only direct equality/inequality. Check
done for all expressions.

203 Evaluation of expressions shall not lead to
overflow/underflow.

Done with overflow checks in the software.

204 A single operation with side-effects shall only be
used in the following contexts:

• by itself
• the right-hand side of an assignment
• a condition
• the only argument expression with a side-effect

in a function call
• condition of a loop
• switch condition
• single part of a chained operation

Reports when:

• A side effect is found in a return statement
• A side effect exists on a single value, and only

one operand of the function call has a side
effect.

 JSF C++ Coding Rules

5-59

N. JSF++ Definition Polyspace Implementation
204.1 The value of an expression shall be the same

under any order of evaluation that the standard
permits.

Reports when:

• Variable is written more than once in an
expression

• Variable is read and write in sub-expressions
• Volatile variable is accessed more than once

Note Read-write operations such as ++, are only
considered as a write.

205 The volatile keyword shall not be used unless
directly interfacing with hardware.

Reports if volatile keyword is used.

Memory Allocation

N. JSF++ Definition Polyspace Implementation
206 Allocation/deallocation from/to the free store

(heap) shall not occur after initialization.
Reports calls to C library functions: malloc /
calloc / realloc / free and all new/delete
operators in functions or methods.

Fault Handling

N. JSF++ Definition Polyspace Implementation
208 C++ exceptions shall not be used. Reports try, catch, throw spec, and throw.

Portable Code

N. JSF++ Definition Polyspace Implementation
209 The basic types of int, short, long, float and

double shall not be used, but specific-length
equivalents should be typedef'd accordingly for
each compiler, and these type names used in the
code.

Only allows use of basic types through direct
typedefs.

213 No dependence shall be placed on C++’s operator
precedence rules, below arithmetic operators, in
expressions.

Reports when a binary operation has one operand
that is not parenthesized and is an operation with
inferior precedence level.

Reports bitwise and shifts operators that are used
without parenthesis and binary operation
arguments.

215 Pointer arithmetic will not be used. Reports:p + Ip - Ip++p--p+=p-=

Allows p[i].

Unsupported JSF++ Rules
• “Code Size and Complexity” on page 5-61

5 Coding Rule Sets and Concepts

5-60

• “Rules” on page 5-61
• “Environment” on page 5-62
• “Libraries” on page 5-62
• “Header Files” on page 5-62
• “Style” on page 5-62
• “Classes” on page 5-62
• “Namespaces” on page 5-64
• “Templates” on page 5-64
• “Functions” on page 5-64
• “Comments” on page 5-65
• “Initialization” on page 5-65
• “Types” on page 5-65
• “Unions and Bit Fields” on page 5-65
• “Operators” on page 5-65
• “Type Conversions” on page 5-65
• “Expressions” on page 5-66
• “Memory Allocation” on page 5-66
• “Portable Code” on page 5-66
• “Efficiency Considerations” on page 5-66
• “Miscellaneous” on page 5-66
• “Testing” on page 5-67

Code Size and Complexity

N. JSF++ Definition
2 There shall not be any self-modifying code.

Rules

N. JSF++ Definition
4 To break a “should” rule, the following approval must be received by the developer:

• approval from the software engineering lead (obtained by the unit approval in the developmental
CM tool)

5 To break a “will” or a “shall” rule, the following approvals must be received by the developer:

• approval from the software engineering lead (obtained by the unit approval in the developmental
CM tool)

• approval from the software product manager (obtained by the unit approval in the developmental
CM tool)

6 Each deviation from a “shall” rule shall be documented in the file that contains the deviation.
Deviations from this rule shall not be allowed, AV Rule 5 notwithstanding.

 JSF C++ Coding Rules

5-61

N. JSF++ Definition
7 Approval will not be required for a deviation from a “shall” or “will” rule that complies with an

exception specified by that rule.

Environment

N. JSF++ Definition
10 Values of character types will be restricted to a defined and documented subset of ISO 10646 1.

Libraries

N. JSF++ Definition
16 Only DO-178B level A [15] certifiable or SEAL 1 C/C++ libraries shall be used with safety-critical (i.e.

SEAL 1) code.

Header Files

N. JSF++ Definition
34 Header files should contain logically related declarations only.
36 Compilation dependencies should be minimized when possible.
37 Header (include) files should include only those header files that are required for them to successfully

compile. Files that are only used by the associated .cpp file should be placed in the .cpp file — not
the .h file.

38 Declarations of classes that are only accessed via pointers (*) or references (&) should be supplied by
forward headers that contain only forward declarations.

Style

N. JSF++ Definition
45 All words in an identifier will be separated by the ‘_’ character.
49 All acronyms in an identifier will be composed of uppercase letters.
55 The name of a header file should reflect the logical entity for which it provides declarations.
56 The name of an implementation file should reflect the logical entity for which it provides definitions

and have a “.cpp” extension (this name will normally be identical to the header file that provides the
corresponding declarations.)

At times, more than one .cpp file for a given logical entity will be required. In these cases, a suffix
should be appended to reflect a logical differentiation.

Classes

N. JSF++ Definition
64 A class interface should be complete and minimal.
65 A structure should be used to model an entity that does not require an invariant.
66 A class should be used to model an entity that maintains an invariant.

5 Coding Rule Sets and Concepts

5-62

N. JSF++ Definition
69 A member function that does not affect the state of an object (its instance variables) will be declared

const. Member functions should be const by default. Only when there is a clear, explicit reason should
the const modifier on member functions be omitted.

70 A class will have friends only when a function or object requires access to the private elements of the
class, but is unable to be a member of the class for logical or efficiency reasons.

70.1 An object shall not be improperly used before its lifetime begins or after its lifetime ends.
71 Calls to an externally visible operation of an object, other than its constructors, shall not be allowed

until the object has been fully initialized.
72 The invariant for a class should be:

• A part of the postcondition of every class constructor,
• A part of the precondition of the class destructor (if any),
• A part of the precondition and postcondition of every other publicly accessible operation.

73 Unnecessary default constructors shall not be defined.
77 A copy constructor shall copy all data members and bases that affect the class invariant (a data

element representing a cache, for example, would not need to be copied).
80 The default copy and assignment operators will be used for classes when those operators offer

reasonable semantics.
84 Operator overloading will be used sparingly and in a conventional manner.
85 When two operators are opposites (such as == and !=), both will be defined and one will be defined in

terms of the other.
86 Concrete types should be used to represent simple independent concepts.
87 Hierarchies should be based on abstract classes.
90 Heavily used interfaces should be minimal, general and abstract.
91 Public inheritance will be used to implement “is-a” relationships.
92 A subtype (publicly derived classes) will conform to the following guidelines with respect to all classes

involved in the polymorphic assignment of different subclass instances to the same variable or
parameter during the execution of the system:

• Preconditions of derived methods must be at least as weak as the preconditions of the methods
they override.

• Postconditions of derived methods must be at least as strong as the postconditions of the methods
they override.

In other words, subclass methods must expect less and deliver more than the base class methods they
override. This rule implies that subtypes will conform to the Liskov Substitution Principle.

93 “has-a” or “is-implemented-in-terms-of” relationships will be modeled through membership or non-
public inheritance.

 JSF C++ Coding Rules

5-63

Namespaces

N. JSF++ Definition
100 Elements from a namespace should be selected as follows:

• using declaration or explicit qualification for few (approximately five) names,
• using directive for many names.

Templates

N. JSF++ Definition
101 Templates shall be reviewed as follows:

1 with respect to the template in isolation considering assumptions or requirements placed on its
arguments.

2 with respect to all functions instantiated by actual arguments.
102 Template tests shall be created to cover all actual template instantiations.
103 Constraint checks should be applied to template arguments.
105 A template definition’s dependence on its instantiation contexts should be minimized.
106 Specializations for pointer types should be made where appropriate.

Functions

N. JSF++ Definition
112 Function return values should not obscure resource ownership.
115 If a function returns error information, then that error information will be tested.
117 Arguments should be passed by reference if NULL values are not possible:

• 117.1 – An object should be passed as const T& if the function should not change the value of the
object.

• 117.2 – An object should be passed as T& if the function may change the value of the object.
118 Arguments should be passed via pointers if NULL values are possible:

• 118.1 – An object should be passed as const T* if its value should not be modified.
• 118.2 – An object should be passed as T* if its value may be modified.

120 Overloaded operations or methods should form families that use the same semantics, share the same
name, have the same purpose, and that are differentiated by formal parameters.

122 Trivial accessor and mutator functions should be inlined.
123 The number of accessor and mutator functions should be minimized.
124 Trivial forwarding functions should be inlined.
125 Unnecessary temporary objects should be avoided.

5 Coding Rule Sets and Concepts

5-64

Comments

N. JSF++ Definition
127 Code that is not used (commented out) shall be deleted.

Note: This rule cannot be annotated in the source code.
128 Comments that document actions or sources (e.g. tables, figures, paragraphs, etc.) outside of the file

being documented will not be allowed.
129 Comments in header files should describe the externally visible behavior of the functions or classes

being documented.
130 The purpose of every line of executable code should be explained by a comment, although one

comment may describe more than one line of code.
131 One should avoid stating in comments what is better stated in code (i.e. do not simply repeat what is

in the code).
132 Each variable declaration, typedef, enumeration value, and structure member will be commented.
134 Assumptions (limitations) made by functions should be documented in the function’s preamble.

Initialization

N. JSF++ Definition
143 Variables will not be introduced until they can be initialized with meaningful values. (See also AV Rule

136, AV Rule 142, and AV Rule 73 concerning declaration scope, initialization before use, and default
constructors respectively.)

Types

N. JSF++ Definition
146 Floating point implementations shall comply with a defined floating point standard.

The standard that will be used is the ANSI/IEEE® Std 754 [1].

Unions and Bit Fields

N. JSF++ Definition
155 Bit-fields will not be used to pack data into a word for the sole purpose of saving space.

Operators

N. JSF++ Definition
167 The implementation of integer division in the chosen compiler shall be determined, documented and

taken into account.

Type Conversions

N. JSF++ Definition
183 Every possible measure should be taken to avoid type casting.

 JSF C++ Coding Rules

5-65

Expressions

N. JSF++ Definition
204 A single operation with side-effects shall only be used in the following contexts:

1 by itself
2 the right-hand side of an assignment
3 a condition
4 the only argument expression with a side-effect in a function call
5 condition of a loop
6 switch condition
7 single part of a chained operation

Memory Allocation

N. JSF++ Definition
207 Unencapsulated global data will be avoided.

Portable Code

N. JSF++ Definition
210 Algorithms shall not make assumptions concerning how data is represented in memory (e.g. big

endian vs. little endian, base class subobject ordering in derived classes, nonstatic data member
ordering across access specifiers, etc.).

210.1 Algorithms shall not make assumptions concerning the order of allocation of nonstatic data members
separated by an access specifier.

211 Algorithms shall not assume that shorts, ints, longs, floats, doubles or long doubles begin at particular
addresses.

212 Underflow or overflow functioning shall not be depended on in any special way.
214 Assuming that non-local static objects, in separate translation units, are initialized in a special order

shall not be done.

Efficiency Considerations

N. JSF++ Definition
216 Programmers should not attempt to prematurely optimize code.

Miscellaneous

N. JSF++ Definition
217 Compile-time and link-time errors should be preferred over run-time errors.
218 Compiler warning levels will be set in compliance with project policies.

5 Coding Rule Sets and Concepts

5-66

Testing

N. JSF++ Definition
219 All tests applied to a base class interface shall be applied to all derived class interfaces as well. If the

derived class poses stronger postconditions/invariants, then the new postconditions /invariants shall
be substituted in the derived class tests.

220 Structural coverage algorithms shall be applied against flattened classes.
221 Structural coverage of a class within an inheritance hierarchy containing virtual functions shall

include testing every possible resolution for each set of identical polymorphic references.

 JSF C++ Coding Rules

5-67

Approximations Used During Verification

• “Why Polyspace Verification Uses Approximations” on page 6-2
• “Orange Sources” on page 6-3
• “Variable Ranges” on page 6-6
• “Stubbed Functions” on page 6-7
• “Initialization of Global Variables” on page 6-13
• “Volatile Variables” on page 6-17
• “Definitions and Declarations” on page 6-19
• “Implicit Data Type Conversions” on page 6-20
• “Using memset and memcpy” on page 6-22
• “#pragma Directives” on page 6-26
• “Standard Library Float Routines” on page 6-28
• “Unions” on page 6-29
• “Variable Cast as Void Pointer” on page 6-30
• “Assembly Code” on page 6-31
• “Determination of Program Stack Usage” on page 6-35
• “Limitations of Polyspace Verification” on page 6-39

6

Why Polyspace Verification Uses Approximations
Polyspace Code Prover uses static verification to prove the absence of run-time errors. Static
verification derives the dynamic properties of a program without actually executing it. Static
verification differs significantly from other techniques such as run-time debugging because the
verification does not rely on a specific test case or set of test cases. The properties obtained from
static verification are true for all executions of your program5.

Static verification uses representative approximations of software operations and data. For instance,
consider the following code:

for (i=0 ; i<1000 ; ++i) {
 tab[i] = foo(i);
}

To check that the variable i never overflows the range of tab, one approach can be to consider each
possible value of i. This approach requires a thousand checks.

In static verification, the software models a variable by its domain. In this case, the software models
that i belongs to the static interval, [0..999]. Depending on the complexity of the data, the software
uses more elaborate models such as convex polyhedrons or integer lattices for this purpose.

An approximation, by definition, leads to information loss. For instance, the verification loses the
information that i is incremented by one every cycle in the loop. However, even without this
information, it is possible to ensure that the range of i is smaller than the range of tab. Only one
check is required to establish this property. Therefore, static verification is more efficient compared
to traditional approaches.

When performing approximations, the verification does not compromise with exhaustiveness. The
reason is that the approximations performed are upper approximations or over-approximations. In
other words, the computed domain of a variable is a superset of its actual domain.

5. The properties obtained from static verification hold true only if you execute your program under the same conditions
that you specified through the analysis options. For instance, the default verification assumes that pointers obtained
from external sources are non-null. Unless you specify the option Consider environment pointers as unsafe (-
stubbed-pointers-are-unsafe), the verification results are obtained under this assumption. They might not hold
true during program execution if the assumption is invalidated and a null pointer is obtained from an external source.
For more information on analysis options, see the documentation for Polyspace Code Prover or Polyspace Code Prover
Server.

6 Approximations Used During Verification

6-2

Orange Sources
The Orange Sources pane shows unconstrained sources such as volatile variables and stubbed
functions that can lead to multiple orange checks (unproven results) in a Code Prover analysis. If you
constrain an orange source, you can address several orange checks together. To see the Orange
Sources pane, click the button on the Result Details pane.

The sources essentially indicate variables whose values cannot be determined from your code. The
variables can be inputs to functions whose call context is unknown or return values of undefined
functions. Code Prover assumes that these variables take the full range of values allowed by their
data type. This broad assumption can lead to one or more orange checks in the subsequent code.

For instance, in this example, if the function random_float is not defined, you see three orange
Overflow checks.

static void Close_To_Zero(void)
{
 float xmin = random_float();
 float xmax = random_float();
 float y;

 if ((xmax - xmin) < 1.0E-37f) { /* Overflow 1 */
 y = 1.0f;
 } else {
 /* division by zero is impossible here */
 y = (xmax + xmin) / (xmax - xmin); /* Overflows 2 and 3 */
 }
}

The function random_float is therefore an orange source that causes at most three orange checks.

Using the Orange Sources pane, you can:

• Review all orange checks originating from the same source.

In the preceding example, if you select the function random_float, the results list shows only the
three orange checks caused by this source. See “Filter Using Orange Sources” on page 3-5.

• Constrain variable ranges by specifying external constraints or through additional code.
Constraining the range of an orange source can remove several orange checks that come from
overapproximation. The remaining orange checks indicate real issues in your code.

 Orange Sources

6-3

In the preceding example, you can constrain the return value of random_float.

For efficient review, click the Max Oranges column header to sort the orange sources by number of
orange checks that result from the source. Constrain the sources with more orange checks before
tackling the others.

Constrain Orange Sources
How you constrain variable ranges and work around the default Polyspace assumptions depends on
the type of orange source:

Stubbed function
If the definition of a function is not available to the Polyspace analysis, the function is stubbed.
The analysis makes several assumptions about stubbed functions. For instance, the return value
of a stubbed function can take any value allowed by its data type.

See “Stubbed Functions” on page 6-7 for assumptions about stubbed functions and how to
work around them.

Volatile variable
If a variable is declared with the volatile specifier, the analysis assumes that the variable can
take any value allowed by its data type at any point in the code.

See “Volatile Variables” on page 6-17 to work around around this assumption.
Extern variable

If a variable is declared with the extern specifier but not defined elsewhere in the code, the
analysis assumes that the variable can take any value within its data type range before it is first
assigned.

Determine where the variable is defined and why the definition is not available to the analysis.
For instance, you might have omitted an include folder from the analysis.

Function called by the main generator
If your code does not contain a main function, a main function is generated for the analysis. By
default, the generated main function calls uncalled functions with inputs that can take any value
allowed by their data type.

Variable initialized by the main generator
If your code does not contain a main function, a main function is generated for the analysis. By
default, in each function called by the generated main, a global variable can take any value
within its data type range before it is first assigned.

Variable set in a permanent range by the main generator
If you explicitly constrain a global variable to a specific range in the permanent mode, the
analysis assumes that the variable can take any value within this range at any point in the code.

Absolute address
If a pointer is assigned an absolute address, the analysis assumes that the pointer dereference
leads to a range of potential values determined by the pointer data type.

See Absolute address usage for examples of absolute address usage and corresponding
Code Prover assumptions. To remove this assumption and flag all uses of absolute address, use
the option -no-assumption-on-absolute-addresses. For more information on analysis
options, see the documentation for Polyspace Code Prover or Polyspace Code Prover Server.

6 Approximations Used During Verification

6-4

Sometimes, more than one orange source can be responsible for an orange check. If you plug an
orange source but do not see the expected disappearance of an orange check, consider if another
source is also responsible for the check.

See Also

More About
• “Orange Checks in Code Prover” on page 1-54
• “Filter Using Orange Sources” on page 3-5

 Orange Sources

6-5

Variable Ranges
If Polyspace cannot determine a variable value from the code, it assumes that the variable has a full
range of values allowed by its type.

For instance, for a variable of integer type, to determine the minimum and maximum value allowed,
Polyspace uses the following criteria:

• The C standard specifies that the range of a signed n-bit integer-type variable must be at least
[-(2n-1-1), 2n-1-1].

The Target processor type that you specify determines the number of bits allocated for a certain
type. For more information, see Target processor type (-target) For more information on
analysis options, see the documentation for Polyspace Code Prover or Polyspace Code Prover
Server..

• Polyspace assumes that your target uses the two’s complement representation for signed integers.
The software uses this representation to determine the exact range of a variable. In this
representation, the range of a signed n-bit integer-type variable is [-2n-1, 2n-1-1].

For example, for an i386 processor:

• A char variable has 8 bits. The C standard specifies that the range of the char variable must be
at least [-127,127].

• Using the two’s complement representation, Polyspace assumes that the exact range of the char
variable is [-128,127].

To determine the range that Polyspace assumes for a certain type:

1 Run verification on this code. Replace type with the type name such as int.

type getVal(void);
void main() {
 type val = getVal();
}

2 Open your verification results. On the Source pane, place your cursor on val.

The tooltip provides the range that Polyspace assumes for type. Since getVal is not defined,
Polyspace assumes that the return value of getVal has full range of values allowed by type.

6 Approximations Used During Verification

6-6

Stubbed Functions
The verification stubs functions that are not defined in your source code or that you choose to stub.
For a stubbed function:

• The verification makes certain assumptions about the function return value and other side effects
of the function.

You can fine-tune the assumptions by specifying constraints.
• The verification ignores the function body if it exists. Operations in the function body are not

checked for run-time errors.

If the verification of a function body is imprecise and causes many orange checks when you call the
function, you can choose to stub the function. To reduce the number of orange checks, you stub the
function, and then constrain the return value of the function and specify other side effects.

To stub functions, you can use these options:

• Functions to stub (-functions-to-stub): Specify functions that you want stubbed.
• Generate stubs for Embedded Coder lookup tables (-stub-embedded-coder-

lookup-table-functions): Stub functions that contain lookup tables in code generated from
models using Embedded Coder®.

• -function-behavior-specifications: Stub functions that correspond to a standard function
that Polyspace recognizes.

For more information on analysis options, see the documentation for Polyspace Code Prover or
Polyspace Code Prover Server.

If you use the first option to stub a function, you constrain the function return value and model other
side effects by specifying constraints. If you want to specify constraints more fine-grained than the
ones available through the Polyspace constraint specification interface, define your own stubs. If you
use the other options to stub functions, the software itself constrains the function return value and
models its side effects appropriately.

The verification makes the following assumptions about the arguments of stubbed functions.

Function Return Value
Assumptions

The verification assumes that:

• The variable returned by the function takes the full range of values allowed by its data type.

If the function returns an enum variable, the variable value is in the range of the enum. For
instance, if an enum type takes values {0,5,-1,32} and a stubbed function has that return type, the
verification assumes that the function returns values in the range -1..32.

• If the function returns a pointer, the pointer is not NULL and safe to dereference. The pointer
does not point to dynamically allocated memory or another variable in your code.

• C++ specific assumptions: The operator new returns allocated memory. Operators such as
operator=, operator+=, operator--(prefixed version) or operator<< returns:

 Stubbed Functions

6-7

• A reference to *this, if the operator is part of a class definition.

For instance, if an operator is defined as:

class X {
 X& operator=(const X& arg) ;
};

It returns a reference to *this (the object that calls the operator). The object that calls the
operator or its data members have the full range of values allowed by their type.

• The first argument, if the operator is not part of a class definition.

For instance, if an operator is defined as:

X& operator+=(X& arg1, const X& arg2) ;

It returns arg1. The object that arg1 refers to or its data members have the full range of
values allowed by their type.

Functions declared with __declspec(no_return) (Visual Studio®) or __attribute__
((noreturn)) (GCC) do not return.

How to Change Assumptions

You can change the default assumptions about the function return value.

• If the function returns a non-pointer variable, you can constrain its range. Use the option
Constraint setup (-data-range-specifications). For more information on analysis
options, see the documentation for Polyspace Code Prover or Polyspace Code Prover Server.

Through the constraint specification interface, you can specify an absolute range [min..max]. To
specify more complicated constraints, write a function stub.

For instance, an undefined function has the prototype:

int func(int ll, int ul);

Suppose you know that the function return value lies between the first and the second arguments.
However, the software assumes full range for the return value because the function is not defined.
To model the behavior that you want and reduce orange checks from the imprecision, write a
function stub as follows:

int func(int ll, int ul) {
 int ret;
 assert(ret>=ll && ret <=ul);
 return ret;
}

Provide the function stub in a separate file for verification. The verification uses your stub as the
function definition.

If the definition of func exists in your code and you want to override the definition because the
verification of the function body is imprecise, embed the actual definition and the stub in a
#ifdef statement:

#ifdef POLYSPACE
int func(int ll, int ul) {

6 Approximations Used During Verification

6-8

 int ret;
 assert(ret>=ll && ret <=ul);
 return ret;
}
#else
int func(int ll, int ul) {
 /*Your function body */
}
#endif

Define the macro POLYSPACE by using the option Preprocessor definitions (-D). The
verification uses your stub instead of the actual function definition.

• If the function returns a pointer variable, you can specify that the pointer might be NULL.

• To specify this assumption for all stubbed functions, use the option Consider environment
pointers as unsafe (-stubbed-pointers-are-unsafe).

• To specify this assumption for specific stubbed functions, use the option Constraint setup
(-data-range-specifications).

For more information on analysis options, see the documentation for Polyspace Code Prover or
Polyspace Code Prover Server.

Function Arguments That are Pointers
Assumptions

The verification assumes that:

• If the argument is a pointer, the function can write any value to the object that the pointer points
to. The range of values is constrained by the argument data type alone.

For instance, in this example, the verification assumes that the stubbed function stubbedFunc
writes any possible value to val. Therefore, the assertion is orange.

void stubbedFunc(int*);

void main() {
 int val=0, *ptr=&val;
 stubbedFunc(ptr);
 assert(val==0);
}

• If the argument is a pointer to a structure, the function can write any value to the structure fields.
The range of values is constrained only by the data type of the fields.

In C++ code, only first level data members of a structure can be written via a pointer to the
structure. For instance, in this example, the analysis has knowledge of what pb->j points to, but
not what pb->pa->i points to. So, after the call to Foo, b.j appears as initialized but a.i is not
initialized.

struct A {
 int i;
};

struct B {
 A* pa;

 Stubbed Functions

6-9

 int j;
};

void Foo(B*);

void main() {
 A a;
 B b;
 b.pa = &a;
 Foo(&b);
 int var1 = b.j;
 int var2 = a.i;
}

• If the argument is a pointer to another pointer, the function can write any value to the object that
the second pointer points to (C code only). This assumption continues to arbitrary depths of a
pointer hierarchy.

For instance, suppose that a pointer **pp points to another pointer *p, which points to an int
variable var. If a stubbed function takes **p as argument, the verification assumes that following
the function call, var has any int value. *p can point to anywhere in allocated memory or can
point to var but does not point to another variable in the code.

• If the argument is a function pointer, the function that it points to gets called (C code only).

For instance, in this example, the stubbed function stubbedFunc takes a function pointer
funcPtr as argument. funcPtr points to func, which gets called when you call stubbedFunc.

typedef int (*typeFuncPtr) (int);

int func(int x){
 return x;
}

int stubbedFunc(typeFuncPtr);

void main() {
 typeFuncPtr funcPtr = (typeFuncPtr)(&func);
 int result = stubbedFunc(funcPtr);
}

If the function pointer takes another function pointer as argument, the function that the second
function pointer points to gets stubbed.

How to Change Assumptions

You can constrain the range of the argument that is passed by reference. Use the option Constraint
setup (-data-range-specifications). For more information on analysis options, see the
documentation for Polyspace Code Prover or Polyspace Code Prover Server.

Through the constraint specification interface, you can specify an absolute range [min..max]. To
specify more complicated constraints, write a function stub.

For instance, an undefined function has the prototype:

void func(int *x, int ll, int ul);

Suppose you know that the value written to x lies between the second and the third arguments.
However, the software assumes full range for the value of *x because the function is not defined. To

6 Approximations Used During Verification

6-10

model the behavior that you want and reduce orange checks from the imprecision, write a function
stub as follows:

void func(int *x, int ll, int ul) {
 assert(*x>=ll && *x <=ul);
}

Provide the function stub in a separate file for verification. The verification uses your stub as the
function definition.

If the definition of func exists in your code and you want to override the definition because the
verification of the function body is imprecise, embed the actual definition and the stub in a #ifdef
statement:

#ifdef POLYSPACE
void func(int *x, int ll, int ul) {
 assert(*x>=ll && *x <=ul);
}
#else
void func(int *x, int ll, int ul) {
 /* Your function body */
}
#endif

Define the macro POLYSPACE by using the option Preprocessor definitions (-D). The
verification uses your stub instead of the actual function definition. For more information on analysis
options, see the documentation for Polyspace Code Prover or Polyspace Code Prover Server.

Global Variables
Assumptions

The verification assumes that the function stub does not modify global variables.

How to Change Assumptions

To model write operations on a global variable, write a function stub.

For instance, an undefined function has the prototype:

void func(void);

Suppose you know that the function writes the value 0 or 1 to a global variable glob. To model the
behavior that you want, write a function stub as follows:

void func(void) {
 volatile int randomVal;
 if(randomVal)
 glob = 0;
 else
 glob = 1;
}

Provide the function stub in a separate file for verification. The verification uses your stub as the
function definition.

 Stubbed Functions

6-11

If the definition of func exists in your code and you want to override the definition because the
verification of the function body is imprecise, embed the actual definition and the stub in a #ifdef
statement as follows:

#ifdef POLYSPACE
void func(void) {
 volatile int randomVal;
 if(randomVal)
 glob = 0;
 else
 glob = 1;
}
#else
void func(void) {
 /* Your function body */
}
#endif

Define the macro POLYSPACE using the option Preprocessor definitions (-D). The verification
uses your stub instead of the actual function definition. For more information on analysis options, see
the documentation for Polyspace Code Prover or Polyspace Code Prover Server.

6 Approximations Used During Verification

6-12

Initialization of Global Variables
Global variables are variables that are visible throughout the program (unless shadowed by local
variables). A Code Prover analysis makes specific assumptions about the initialization of global
variables.

Global Variable Initialization When main Function Exists
If your code contains a main function, a Code Prover verification considers that global variables are
initialized according to ANSI C standards. The default values are:

• 0 for int
• 0 for char
• 0.0 for float

and so on.

Sometimes, you might want to check if global variables are explicitly initialized in the code. For
instance:

• In a warm reboot, to save time, the bss segment of a program, which might hold variable values
from a previous state, is not loaded. Instead, the program is supposed to explicitly initialize all
non-const variables without default values before execution. You can delimit this initialization code
and verify that all non-const global variables are indeed initialized in a warm reboot.

To delimit a section of code as initialization code, enter the pragma polyspace_end_of_init in
the main function. The initialization code begins from the main function and continues upto this
pragma. Use these options to check the initialization code only and determine whether all global
variables are initialized in this section of the code:

• Check that global variables are initialized after warm reboot (-check-
globals-init)

• Verify initialization section of code only (-init-only-mode)

The Code Prover analysis reports non-initialized variables using red or orange results in the
initialization code for the checks:

• Global variable not assigned a value in initialization code
• Non-initialized variable

• To only check if global variables are explicitly initialized at the point of use, use the option Ignore
default initialization of global variables (-no-def-init-glob).

The Code Prover analysis reports non-initialized variables using red or orange results for the
check Non-initialized variable.

For more information on analysis options, see the documentation for Polyspace Code Prover or
Polyspace Code Prover Server.

 Initialization of Global Variables

6-13

Global Variable Initialization When main Function Does Not Exist
If your code does not have a main function, Code Prover begins verifying each uncalled function with
the assumption that global variables have full range value, constrained only by their data type. See
also “Variable Ranges” on page 6-6.

For instance, consider this example:

int glob;
void func1_callee();

void func1() {
 int loc = glob;
 if(!glob)
 func1_callee();
}

void func1_callee() {
 int loc = glob;
}

void func2() {
 int loc = glob;
}

In both func1 and func2, the global variable glob and consequently the local variable loc has full
range of int values.

However, only uncalled functions begin with full-range values of global variables. The function
func1_callee is called in func1 after the value of glob is constrained to zero. In func1_callee,
the global variable glob and consequently the local variable loc has the constrained value zero.

How Code Prover Implements Assumption About Global Variable
Initialization
The software uses the dummy function _init_globals() to initialize global variables. The
_init_globals() function is the first function implicitly called in the main function (or generated
main function if there is no main).

Consider the following code in the application gv_example.c.

extern int func(int);

int garray[3] = {1, 2, 3};
int gvar = 12;

int main(void) {
 int i, lvar = 0;
 for (i = 0; i < 3; i++)
 lvar += func(garray[i] + gvar);
 return lvar;
}

After verification:

6 Approximations Used During Verification

6-14

• On the Results List pane, if you select File from the list, under the node gv_example.c,
you see _init_globals.

• On the Variable Access pane, gv_example._init_globals represents the initialization of the
global variable. The Values column shows the value of the global variable immediately after
initialization.

What Initialization Means for Complex Data Types
The following table lists what is checked for each data type to determine initialization. The check
happens at the time of read operations for the check Non-initialized variable and at the end of the
initialization section for the check Global variable not assigned a value in initialization code.

Data Type What Green Check for Initialization Means
Fundamental types (int, double, etc.) The variable is written at least once.
Array data types Every array element is written at least once.
Structured data types Every structure field that is used is written at

least once.

If you check initialization code only using the
option Verify initialization section of
code only (-init-only-mode), the analysis
checks for initialization of all structure fields,
whether used or not.

 Initialization of Global Variables

6-15

Data Type What Green Check for Initialization Means
Pointers The pointer is written at least once. However,

Code Prover does not check for initialization of
the pointed buffer (till you dereference the
pointer).

Enumerations The enum variable is written at least once.
However, Code Prover does not check if the
variable has one of the enum values.

See Also

6 Approximations Used During Verification

6-16

Volatile Variables
The values of volatile variables can change without explicit write operations.

For local volatile variables:

• Polyspace assumes that the variable has a full range of values allowed by its type.
• Unless you explicitly initialize the variable, when you read the variable, Polyspace produces an

orange Non-initialized local variable check.

In this example, Polyspace assumes that val1 is potentially noninitialized but val2 is initialized.
Polyspace considers that the + operation can cause an overflow because it assumes both variables to
have all possible values allowed by their data types.

int func (void)
{
 volatile int val1, val2=0;
 return(val1 + val2);
}

For global volatile variables:

• Polyspace assumes that the variable has a full range of values allowed by its type.

You can constrain the range externally. See Constrain Global Variable Range in the documentation
for Polyspace Code Prover or Polyspace Code Prover Server.

• Even if you do not explicitly initialize the variable, when you read the variable, Polyspace produces
a green Non-initialized variable check.

If the root cause of an orange check is a local volatile variable, you cannot override the default
assumptions and constrain the values of the volatile variables. Try one of the following:

• If the volatile variable represents hardware-supplied data, see if you can use a function call to
model this data retrieval. For example, replace volatile int port_A with int port_A =
read_location(). You do not have to define the function. Polyspace stubs the undefined
functions. You can then specify constraints on the function return values using the option
Constraint setup (-data-range-specifications). For more information on analysis
options, see the documentation for Polyspace Code Prover or Polyspace Code Prover Server.

• See if you can copy the contents of the volatile variable to a global nonvolatile variable. You can
then constrain the global variable values throughout your code. See Constrain Global Variable
Range in the documentation for Polyspace Code Prover or Polyspace Code Prover Server.

• Replace the volatile variable with a stubbed function, but only for verification. Before verification,
specify constraints on the stubbed functions.

1 Write a Perl script that replaces each volatile variable declaration with a nonvolatile
declaration where you obtain the variable value from a function call.

For example, if your code contains the line volatile s8 PORT_A, your Perl script can
contain this substitution:

$line=~ s/^\s*volatile\s*s8\s*PORT_A;/s8 PORT_A = random_s8();/g;
2 Specify the location of this Perl script for the analysis option Command/script to apply

to preprocessed files (-post-preprocessing-command).

 Volatile Variables

6-17

3 In an include file, provide the function declaration. For example, for a function random_s8,
the include file can contain the following declaration:

#ifndef POLYSPACE_H
#define POLYSPACE_H
signed char random_s8(void);
#endif

4 Insert a #include directive for your include file in the relevant source files

Instead of a manual insertion, specify the location of your include file for the analysis option
Include (-include).

For more information on analysis options, see the documentation for Polyspace Code Prover or
Polyspace Code Prover Server.

6 Approximations Used During Verification

6-18

Definitions and Declarations
The definition and declaration of a variable are two different but related operations.

Definition
• If you define a function it means that the body of the function is written: int f(void)

{ return 0; }
• If you define a variable, it means that a part of memory is reserved for the variable: int x; or

extern int x=0;

When a variable is not defined, the software considers the variable to be initialized, and to have
potentially any value in its full range.

When a function is not defined, the software stubs the function.

Declaration
• Function declaration: int f(void);
• Variable declaration: extern int x;

A declaration provides information about the type of the function or variable. If you use the function
or variable in a file where it has not been declared, a compilation error results.

 Definitions and Declarations

6-19

Implicit Data Type Conversions
If an operation involves two operands, the verification assumes that before the operation takes place,
the operands can undergo implicit data type conversion. Whether this conversion happens depends
on the original data types of the operands.

Following are the conversion rules that apply if the operands in a binary operation have the same
data type. Both operands can be converted to int or unsigned int type before the operation is
performed. This conversion is called integer promotion. The conversion rules are based on the ANSI
C99 Standard.

• char and signed short variables are converted to int variables.
• unsigned short variables are converted to int variables only if an int variable can represent

all possible values of an unsigned short variable.

For targets where the size of int is the same as size of short, unsigned short variables are
converted to unsigned int variables. For more information on how to see the sizes for various
targets, see the documentation for Polyspace Code Prover or Polyspace Code Prover Server.

• Types such as int, long and long long remain unchanged.

Following are some of the conversion rules that apply when the operands have different data types.
The rules are based on the ANSI C99 Standard.

• If both operands are signed or unsigned, the operand with a lower-ranked data type is
converted to the data type of the operand with the higher-ranked type. The rank increases in the
order char, short, int, long, and long long.

• If one operand is unsigned and the other signed, and the unsigned operand data type has a
rank higher or the same as the signed operand data type, the signed operand is converted to
the unsigned operand type.

For instance, if one operand has data type int and the other has type unsigned int, the int
operand is converted to unsigned int.

Implicit Conversion When Operands Have Same Data Type
This example shows implicit conversions when the operands in a binary operation have the same data
type. If you run verification on the examples, you can use tooltips on the Source pane to see the
conversions.

In the first addition, i1 and i2 are not converted before the addition. Their sum can have values
outside the range of an int type because i1 and i2 have full-range values. Therefore, the Overflow
check on the first addition is orange.

In the second addition, c1 and c2 are promoted to int before the addition. The addition does not
overflow because an int variable can represent all values that result from the sum of two char
variables. The Overflow check on the second addition is green. However, when the sum is assigned to
a char variable, an overflow occurs during the conversion from int back to char. An orange
Overflow check appears on the = operation.

extern char input_char(void);
extern int input_int(void);

6 Approximations Used During Verification

6-20

void main(void) {
 char c1 = input_char();
 char c2 = input_char();
 int i1 = input_int();
 int i2 = input_int();

 i1 = i1 + i2;
 c1 = c1 + c2;
}

Implicit Conversion When Operands Have Different Data Types
The following examples show implicit conversions that happen when the operands in a binary
operation have different data types. If you run verification on the examples, you can use tooltips on
the Source pane to see the conversions.

In this example, before the <= operation, x is implicitly converted to unsigned int. Therefore, the
User assertion check is red.

#include <assert.h>
int func(void) {
 int x = -2;
 unsigned int y = 5;
 assert(x <= y);
}

In this example, in the first assert statement, x is implicitly converted to unsigned int before the
operation x <= y. Because of this conversion, in the second assert statement, x is greater than or
equal to zero. The User assertion check on the second assert statement is green.

int input(void);

void func(void) {
 unsigned int y = 7;
 int x = input();
 assert (x >= -7 && x <= y);
 assert (x >=0 && x <= 7);
}

 Implicit Data Type Conversions

6-21

Using memset and memcpy
In this section...
“Polyspace Specifications for memcpy” on page 6-22
“Polyspace Specifications for memset” on page 6-23

Polyspace Specifications for memcpy
Syntax:

#include <string.h>
void * memcpy (void * destinationPtr, const void * sourcePtr, size_t num);

If your code uses the memcpy function, see the information in this table.

Specification Example
Polyspace runs a Invalid use of standard
library routine check on the function. The check
determines if the memory block that sourcePtr
or destinationPtr points to is greater than or
equal in size to the memory assigned to them
through num.

#include <string.h>
typedef struct {
 char a;
 int b;
 } S;

void func(int);

void main() {
 S s;
 int d;
 memcpy(&d, &s, sizeof(S));
}

In this code, Polyspace produces a red Invalid
use of standard library routine error because:

• d is an int variable.
• sizeof(S) is greater than sizeof(int).
• A memory block of size sizeof(S) is

assigned to &d.

6 Approximations Used During Verification

6-22

Specification Example
Polyspace does not check if the memory that
sourcePtr points to is itself initialized.

Following the use of memcpy, Polyspace considers
that the variables that destinationPtr points
to can have any value allowed by their type.

#include <string.h>
typedef struct {
 char a;
 int b;
 } S;

void func(int);

void main() {
 S s, d={'a',1};
 int val;
 val = d.b; // val=1

 memcpy(&d, &s, sizeof(S));
 val = d.b;
 // val can have any int value
}

In this code, when the memcpy function copies s
to d, Polyspace does not produce a red Non-
initialized local variable error. Following the
copy, the verification considers that the fields of d
can have any value allowed by their type. For
instance, d.b can have any value in the range
allowed for an int variable.

Polyspace raises a red Invalid use of standard
library routine check if the source and
destination arguments overlap. Overlapping
assignments are forbidden by the C Standard.

A red check is produced for this memory
assignment:

#include <string.h>

int main() {
 char arr[4];
 memcpy (arr, arr + 3, sizeof(int));
}

Polyspace Specifications for memset
Syntax:

#include <string.h>
void * memset (void * ptr, int value, size_t num);

If your code uses the memset function, see the information in this table.

 Using memset and memcpy

6-23

Specification Example
Polyspace runs a Invalid use of standard
library routine check on the function. The check
determines if the memory block that ptr points
to is greater than or equal in size to the memory
assigned to them through num.

#include <string.h>
typedef struct {
 char a;
 int b;
} S;

void main() {
 int val;
 memset(&val,0,sizeof(S));
}

In this code, Polyspace produces a red Invalid
use of standard library routine error because:

• val is an int variable.
• sizeof(S) is greater than sizeof(int).
• A memory block of size sizeof(S) is

assigned to &val.
If value is 0, following the use of memset,
Polyspace considers that the variables that ptr
points to have the value 0.

#include <string.h>
typedef struct {
 char a;
 int b;
} S;

void main() {
 S s;
 int val;
 memset(&s,0,sizeof(S));
 val=s.b; //val=0
}

In this code, Polyspace considers that following
the use of memset, each field of s has value 0.

6 Approximations Used During Verification

6-24

Specification Example
Following the use of memset, if value is anything
other than 0, Polyspace considers that:

• The variables that ptr points to can be
noninitialized.

• If initialized, the variables can have any value
that their type allows.

#include <string.h>
typedef struct {
 char a;
 int b;
} S;

void main() {
 S s;
 int val;
 memset(&s,1,sizeof(S));
 val=s.b;
 // val can have any int value
}

In this code, Polyspace considers that following
the use of memset, each field of s has any value
that its type allows. For instance, s.b can have
any value in the range allowed for an int
variable.

Following the memset, the structure fields can
have different values depending on the structure
packing and padding bits. Therefore, structure
field assignments with memset are
implementation-dependent. Code Prover
performs this part of the analysis in an
implementation-independent way. The analysis
allows all possible paddings and therefore full
range of values for the structure fields.

 Using memset and memcpy

6-25

#pragma Directives
The verification ignores most #pragma directives, because they do not carry information relevant to
the verification.

However, the verification takes into account the behavior of these pragmas.

Pragma Effect on Verification
#pragma asm and #pragma endasm, or #asm
and #endasm

The verification ignores the content between the
pragmas.

#pragma hdrstop For Visual C++® compilers, the verification stops
processing precompiled headers at the point
where it encounters the pragma.

#pragma once The verification allows the current source file to
be included only once in a compilation.

#pragma pack(n), #pragma
pack(push[,n]), #pragma pack(pop)

The verification takes into account the boundary
alignment specified in the pragmas.

#pragma pack without an argument is treated
as #pragma pack(1).

For more information, see the following example.
#error message The verification stops if it encounters the

directive.

For more information on the pragmas, see your compiler documentation. If the verification does not
take into account a certain pragma from the preceding list, see if you specified the right compiler for
your verification. For more information, see Compiler (-compiler).

For instance, in this code, the directives #pragma pack(n) force a new alignment boundary in the
structure. The User assertion checks in the main function are green because the verification
takes into account the behavior of the directives. The verification uses these options:

• Target processor type (-target): i386 (char: 1 byte, int: 4 bytes)
• Compiler (-compiler): gnu4.9

For more information on analysis options, see the documentation for Polyspace Code Prover or
Polyspace Code Prover Server.

#include <assert.h>

#pragma pack(2)

struct _s6 {
 char c;
 int i;
} s6;

#pragma pack() /* Restores default packing: pack(4) */

struct _sb {
 char c;

6 Approximations Used During Verification

6-26

 int i;
} sb;

#pragma pack(1)

struct _s5 {
 char c;
 int i;
} s5;

int main(void) {
 assert(sizeof(s6) == 6);
 assert(sizeof(sb) == 8);
 assert(sizeof(s5) == 5);
 return 0;
}

 #pragma Directives

6-27

Standard Library Float Routines
For some two-argument standard library float routines, the verification can ignore the function
arguments and assume that the function returns all possible values in its range.

In this code, the first assert statement is true and the second assert statement is false. However,
because the verification assumes that fmodf and nextafterf return full-range values, it considers
that the assert statements are false but only on a fraction of possible execution paths. Therefore,
the User assertion checks on the assert statements are orange.

#include <math.h>
int main() {
 float val1=10.0, val2=3.0,res;
 res = fmodf(val1/val2);
 assert(res==1.0);

 res = nextafterf(val2,val1);
 assert(res<3.0);
}

6 Approximations Used During Verification

6-28

Unions
In some situations, unions can help you construct efficient code. However, if you write a union
member and read back a different union member, the behavior depends on the member sizes and can
be implementation-dependent. You have to determine the following for your implementation:

• Padding – Padding can be inserted at the end of a union.
• Alignment – Members of structures within a union can have different alignments.
• Endianness – Whether the most significant byte of a word is stored at the lowest or highest

memory address.
• Bit-order – Bits within bytes can have both different numbering and allocation to bit fields.

When you use unions in your code, because of these issues, Polyspace verification can lose precision.

If you write a union member and read back another union member, Polyspace considers that the
latter member can have any value that its type allows. In this code, the member b of X is written, but
a is read. Polyspace considers that a can have any int value and both branches of the if-else
statement are reachable.

typedef union _u {
 int a;
 char b[4];
} my_union;

void main() {
 my_union X;

 X.b[0] = 1;
 X.b[1] = 1;
 X.b[2] = 1;
 X.b[1] = 1;
 if (X.a == 0x1111) {
 }
 else {
 }
}

To avoid using unions in your code, check for violations of MISRA C:2012 Rule 19.2.

Note If you initialize a union using a static initializer, following ANSI C standard, Polyspace
considers that the union member appearing first in the declaration list gets initialized.

 Unions

6-29

Variable Cast as Void Pointer
The C language allows the use of statements that cast a variable as a void pointer. However,
Polyspace verification of these statements entails a loss of precision.

Consider:
1 typedef struct {
2 int x1;
3 } s1;
4
5 s1 object;
6
7 void g(void *t) {
8 int x;
9 s1 *p;
10
11 p = (s1 *)t;
12 x = p->x1; // x should be assigned value 5 but p->x1 is full-range
13 }
14
15 void main(void) {
16 s1 * p;
17
18 object.x1 = 5;
19 p = &object;
20 g((void *)p); // p cast as void pointer
21 }

On line 12, the variable x must be assigned the value 5. However, the software assumes that p->x1
has full range of values allowed by its type.

6 Approximations Used During Verification

6-30

Assembly Code
Polyspace recognizes most inline assemblers as introduction of assembly code. The verification
ignores the assembly code but accounts for the fact that the assembly code can modify variables in
the C code.

If introduction of assembly code causes compilation errors:

1 Embed the assembly code between a #pragma my_asm_begin and a #pragma my_asm_end
statement.

2 Specify the analysis option -asm-begin my_asm_begin -asm-end my_asm_end.

For more information, see -asm-begin -asm-end. For more information on analysis options, see
the documentation for Polyspace Code Prover or Polyspace Code Prover Server.

Recognized Inline Assemblers
Polyspace recognizes these inline assemblers as introduction of assembly code.

• asm

Examples:

• int f(void)
{
 asm ("% reg val; mtmsr val;");
 asm("\tmove.w #$2700,sr");
 asm("\ttrap #7");
 asm(" stw r11,0(r3) ");
 assert (1); // is green
 return 1;
}

• int other_ignored2(void)
{
 asm "% reg val; mtmsr val;";
 asm mtmsr val;
 assert (1); // is green
 asm ("px = pm(0,%2); \
 %0 = px1; \
 %1 = px2;"
 : "=d" (data_16), "=d" (data_32)
 : "y" ((UI_32 pm *)ram_address):
"px");
 assert (1); // is green
}

• int other_ignored4(void)
{
 asm {
 port_in: /* byte = port_in(port); */
 mov EAX, 0
 mov EDX, 4[ESP]
 in AL, DX
 ret
 port_out: /* port_out(byte,port); */
 mov EDX, 8[ESP]

 Assembly Code

6-31

 mov EAX, 4[ESP]
 out DX, AL
 ret }
assert (1); // is green
}

• __asm__

Examples:

• int other_ignored6(void)
{
#define A_MACRO(bus_controller_mode) \
 __asm__ volatile("nop"); \
 __asm__ volatile("nop"); \
 __asm__ volatile("nop"); \
 __asm__ volatile("nop"); \
 __asm__ volatile("nop"); \
 __asm__ volatile("nop")
 assert (1); // is green
 A_MACRO(x);
 assert (1); // is green
 return 1;
}

• int other_ignored1(void)
{
 __asm
 {MOV R8,R8
 MOV R8,R8
 MOV R8,R8
 MOV R8,R8
 MOV R8,R8}
 assert (1); // is green
}

• int GNUC_include (void)
{
 extern int __P (char *__pattern, int __flags,
 int (*__errfunc) (char *, int),
 unsigned *__pglob) __asm__ ("glob64");
 __asm__ ("rorw $8, %w0" \
 : "=r" (__v) \
 : "0" ((guint16) (val)));
 __asm__ ("st g14,%0" : "=m" (*(AP)));
 __asm("" \
 : "=r" (__t.c) \
 : "0" ((((union { int i, j; } *) (AP))++)->i));
 assert (1); // is green
 return (int) 3 __asm__("% reg val");
}

• int other_ignored3(void)
{
 __asm {ldab 0xffff,0;trapdis;};
__asm {ldab 0xffff,1;trapdis;};
 assert (1); // is green
 __asm__ ("% reg val");
 __asm__ ("mtmsr val");
 assert (1); // is green

6 Approximations Used During Verification

6-32

 return 2;
}

• #pragma asm #pragma endasm

Examples:

• int pragma_ignored(void)
{
 #pragma asm
 SRST
 #pragma endasm
 assert (1); // is green
}

• void test(void)
{
 #asm
 mov _as:pe, reg
 jre _nop
 #endasm
 int r;
 r=0;
 r++;
}

Single Function Containing Assembly Code
The software stubs a function that is preceded by asm, even if a body is defined.
asm int h(int tt) // function h is stubbed even if body is defined
{
 % reg val; // ignored
 mtmsr val; // ignored
 return 3; // ignored
};

void f(void) {
 int x;
 x = h(3); // x is full-range
}

Multiple Functions Containing Assembly Code
The functions that you specify through the following pragma are stubbed automatically, even if
function bodies are defined.
#pragma inline_asm(list of functions)

Code examples:

#pragma inline_asm(ex1, ex2)
 // The functions ex1 and ex2 are
 // stubbed, even if their bodies are defined

int ex1(void)
{
 % reg val;
 mtmsr val;
 return 3; // ignored
};

 Assembly Code

6-33

int ex2(void)
{
 % reg val;
 mtmsr val;
 assert (1); // ignored
 return 3;
};

#pragma inline_asm(ex3) // the definition of ex3 is ignored

int ex3(void)
{
 % reg val;
 mtmsr val; // ignored
 return 3;
};

void f(void) {
 int x;

 x = ex1(); // ex1 is stubbed : x is full-range
 x = ex2(); // ex2 is stubbed : x is full-range
 x = ex3(); // ex3 is stubbed : x is full-range
}

Local Variables in Functions with Assembly Code
The verification ignores the content of assembly language instructions, but following the instructions,
it makes some assumptions about:

• Uninitialized local variables: The assembly instructions can initialize these variables.
• Initialized local variables: The assembly instructions can write any possible value to the variables

allowed by the variable data types.

For instance, the function f has assembly code introduced through the asm statement.
int f(void) {
 int val1, val2 = 0;
 asm("mov 4%0,%%eax"::"m"(val1));
 return (val1 + val2);
}

On the return statement, the Non-initialized local variable check has the following results:

• val1: The check is orange because the assembly instruction can initialize val1.
• val2: The check is green. However, val2 can have any int value.

If the variable is static, the assumptions are true anywhere in the function body, even before the
assembly instructions.

6 Approximations Used During Verification

6-34

Determination of Program Stack Usage
The Polyspace Code Prover analysis can estimate stack usage of each function in your program and
compute the entire program stack usage. The analysis uses the function call hierarchy of your
program to estimate stack usage. The stack usage of a function is the sum of local variable sizes in
the function plus the maximum stack usage from function callees. The stack usage of the function at
the top of the call hierarchy is the program stack usage.

For instance, for this call hierarchy, the stack usage of func is the size of local variables in func plus
the maximum stack usage from func1 and func2 (unless they are called in mutually exclusive
branches of a conditional statement).

For details, see:

• Function metrics: Maximum Stack Usage and Minimum Stack Usage
• Project metrics: Program Maximum Stack Usage and Program Minimum Stack Usage

Investigate Possible Stack Overflow
If your stack usage exceeds available stack space, you can identify which function is responsible.
Begin at the main function and navigate your program call tree. During navigation, look for the
function that has an unreasonable size of local variables. If you cannot identify such a function, look
for a call sequence that is unreasonably long. The detailed steps for navigation are:

1 On the Source pane, select the main function. On the Call Hierarchy pane, you see the
functions called from main (callees). To see the full hierarchy, right-click a function and expand
all nodes.

If the Call Hierarchy pane is not open by default, select Window > Show/Hide View > Call
Hierarchy.

 Determination of Program Stack Usage

6-35

2 To navigate to the callee definition in your source, on the Call Hierarchy pane, double-click each
callee name. Then, click the callee name on the Source pane. The Result Details pane shows
the higher estimate of local variable size and stack usage by the callee.

6 Approximations Used During Verification

6-36

Stack Usage Not Computed
For function stack usage to be computed, the analysis must be able to reach the end of the function.
The following can prevent the computation of function stack usage:

• Red checks.

If a definite run-time error occurs in a function or one of its callees, the analysis does not compute
its stack usage. The reason is that code following a red check is not analyzed. If the unanalyzed
code contains function calls, any stack usage estimate for the caller function is inaccurate.

In this example, the stack usage of func is not computed because following the red overflow, the
remainder of the function is not analyzed. If the stack usage was computed, function calls in the
unanalyzed code, such as the call to func2, would not be part of the computation.

#include <limits.h>
void func(void) {
 int val=INT_MAX;
 val++;

 Determination of Program Stack Usage

6-37

 func2();
}

• Recursive functions.

If a function calls itself directly or indirectly, its stack usage and the stack usage of all functions
that call this function are not computed.

If the program stack usage appears as not computed, make sure that the stack usage of all functions
are computed. In the Information column on the Results List pane, check if a function stack usage
result shows the value Not computed.

Stack Usage Assumptions
If a function is called but not defined in the code that you provide to Polyspace, the stack usage
determination does not take the function call into account.

This assumption applies to:

• Implicit C++ constructors.

For instance, in this example, func calls the constructor of class myClass when myObj is defined.
Stack usage determination does not consider the constructor as a callee of func.

class myClass {std::string str;};

void func() {
 myClass myObj;
}

• Standard library functions or other functions whose definitions are missing from the code in your
Polyspace project.

For instance, in this example, func calls the standard library function cos. Unless you provide the
definition of cos, stack usage determination does not consider it as a callee of func.

#include <math.h>

double func(double arg) {
 return cos(arg);
}

6 Approximations Used During Verification

6-38

Limitations of Polyspace Verification
Code verification has certain limitations. The Polyspace Code Prover Limitations document describes
known limitations of the code verification process.

This document is stored as codeprover_limitations.pdf in the following folder:

polyspaceroot\polyspace\verifier\code_prover_desktop

Here, polyspaceroot is the Polyspace installation folder, for instance, C:\Program Files
\Polyspace\R2020a.

 Limitations of Polyspace Verification

6-39

Troubleshooting Polyspace Access

7

Polyspace Access ETL and Web Server services do not start

Issue
You start the Polyspace Access services but after a moment, the ETL and Web Server services stop.
You might see a HTTP 403 error message in your web browser when you try to connect to Polyspace
Access.

Possible Cause: Hyper-V Network Configuration Cannot Resolve Local
Host Names
On Windows®, the virtual machine that runs the Docker containers is managed by Hyper-V.
Depending on your network configuration, Hyper-V might not resolve local host names. The Polyspace
Access ETL and Web Server services cannot connect to the host that you specify with these host
names.

To test whether Hyper-V can resolve host name myHostname on a machine that is connected to the
Internet, at the command line, enter:

docker run --rm -it alpine ping myHostname

If Hyper-V cannot resolve the host name, you get an error message.

Solution

Stop and restart the cop-docker-agent binary without using the --hostname option. At the
command line, enter:

docker stop polyspace-cop
cop-docker-agent

• If you are on a trusted network or you do not want to use the HTTPS protocol:

1 In the cluster operator web UI, go to the Settings tab, clear Use HTTPS protocol for all the
services and save your changes.

2 On the Services tab, click PROVISION, and then START ALL to restart any stopped
services.

• If you want to use the HTTPS protocol, generate certificates with a subject alternative name
(SAN) that includes the IP address of the cluster operator node on which the services are running.

1 Copy this configuration file to a text editor and save it on your machine as openssl.cnf.

Configuration file

[req]
req_extensions = v3_req
distinguished_name = req_distinguished_name
prompt = no

[req_distinguished_name]
countryName = US
stateOrProvinceName = yourState
organizationName = myCompany

7 Troubleshooting Polyspace Access

7-2

organizationalUnitName = myOrganization
emailAddress = user@email.com
commonName = hostName

[v3_req]
basicConstraints = CA:FALSE
keyUsage = nonRepudiation, digitalSignature, keyEncipherment
subjectAltName = @alt_names

[alt_names]
DNS.1 = hostName
DNS.2 = fullyQualifiedDomainName
IP.1 = nodeIPAddress

hostName is the host name of the machine on which you run the Gateway service.
fullyQualifiedDomainName is the corresponding fully qualified domain name.
nodeIPAddress is the IP address of the node on which you run the Gateway service.

You do not need to edit the value of the other fields in the [req_distinguished_name]
section of openssl.cnf. Updating the value of these fields does not affect the configuration.

2 In the cluster operator web UI, go to the Nodes tab. The IP address listed in the Hostname
column corresponds to nodeIPAddress in the openssl.cnf file. If there is more than one
node listed, add an additional line in the [alt_names] section of openssl.cnf for each
IP address. For example:

[alt_names]
DNS.1 = hostName
DNS.2 = fullyQualifiedDomainName
IP.1 = nodeIPAddress
IP.2 = additionalNodeIPAddress

3 Generate a certificate signing request (CSR) by using your openssl.cnf configuration file.
At the command line, enter:

openssl req -new -out myReqest.csr -newkey rsa:4096 \
-keyout myKey.key -nodes -config openssl.cnf

The command outputs a private key file myKey.key and the file myRequest.csr.
4 To generate a signed certificate:

• If you use your organization's certificate authority, submit myRequest.csr to the
certificate authority. The certificate authority uses the file to generate a signed server
certificate. For instance, server_cert.cer.

• If you use self-signed certificates, at the command line, enter:

openssl x509 -req -days 365 -in myRequest.csr -signkey myKey.key \
-out self-cert.pem -extensions v3_req -extfile openssl.cnf

The command outputs self-signed certificate self-cert.pem.
5 In the cluster operator web UI, go to the Settings tab and update these settings for the User

Manager, Web Server, and Gateway services.

Certificate file: Path to the signed certificate you obtained from your
organization's certificate authority or path to the self-signed
certificate that you generated in step 4.

 Polyspace Access ETL and Web Server services do not start

7-3

https://en.wikipedia.org/wiki/Certificate_authority

Certificate private
key file:

Path to the private key file you generated in step 3.

Trusted
certificates file:

Path to the self-signed certificate that you generated step 4.

If you use a certificate signed by your organization's certificate
authority, you do not need to update this field.

Save your changes.
6 On the Services tab, click PROVISION then START ALL to restart any stopped services.

7 Troubleshooting Polyspace Access

7-4

Contact Technical Support About Polyspace Access Issues
If you need support from MathWorks for Polyspace Access issues, go to this page and create a service
request. You need a MathWorks login and password to create a service request.

Before you contact MathWorks, gather this information.

• Operating system

To see information about the operating system of the machine where you install Polyspace access,
at the command line, enter:

Windows systeminfo | findstr /C:OS
Linux® uname -a

• Polyspace Access version

Log into Polyspace Access, then at the top of the window click > About Polyspace. If
Polyspace Access is not yet installed or you cannot log into Polyspace Access, at the command
line, navigate to the folder where you unzipped the Polyspace Access installation image, and
enter:

Windows type VERSION
Linux cat VERSION

• License number

Log into Polyspace Access, then at the top of the window click > About Polyspace. If
Polyspace Access is not yet installed or you cannot log into Polyspace Access, contact your license
administrator to obtain your license number.

• Polyspace Access service logs

To generate logs for the different Polyspace Access services, at the command line, enter:

docker logs -f polyspace-web-server >> web-server.log
docker logs -f polyspace-etl >> etl.log
docker logs -f polyspace-db >> database.log
docker logs -f polyspace-usermanager >> usermanager.log
docker logs -f polyspace-gateway >> gateway.log
docker logs -f polyspace-issuetracker >> issuetracker.log

Attach the log files to your service request. The commands to generate these logs are the same for
Windows and Linux.

• Polyspace Access web interface log

To generate a log for the Polyspace Access web interface, log into Polyspace Access. In the left
pane, click SUPPORT REPORT then Get support info. Attach the generated supportreport
file to your service request.

 Contact Technical Support About Polyspace Access Issues

7-5

https://www.mathworks.com/support/contact_us.html?s_tid=doc2cs

	Interpret Polyspace Code Prover Access Results
	Interpret Polyspace Code Prover Access Results
	Interpret Result
	Find Root Cause of Result

	Code Prover Result and Source Code Colors
	Result Colors
	Source Code Colors
	Global Variable Colors

	Code Prover Run-Time Checks
	Data Flow Checks
	Numerical Checks
	Static Memory Checks
	Control Flow Checks
	C++ Checks
	Other Checks

	Dashboard
	Code Metrics Dashboard
	Quality Objectives Dashboard
	Customize Software Quality Objectives

	Call Hierarchy
	Configuration Settings
	Global Variables
	Result Details
	Results List
	Review History
	Source Code
	Tooltips
	Examine Source Code
	Expand Macros
	View Code Block
	Navigate from Code to Model

	Track Issue in Bug Tracking Tool
	Create a Ticket
	Manage Existing Tickets

	Code Prover Analysis Following Red and Orange Checks
	Code Following Red Check
	Green Check Following Orange Check
	Gray Check Following Orange Check
	Red Check Following Orange Check
	Red Checks in Unreachable Code

	Order of Code Prover Run-Time Checks
	Orange Checks in Code Prover
	When Orange Checks Occur
	Why Review Orange Checks
	How to Review Orange Checks
	How to Reduce Orange Checks

	Managing Orange Checks
	Software Development Stage
	Quality Goals

	Critical Orange Checks
	Path
	Bounded Input Values
	Unbounded Input Values

	Software Quality Objectives
	Comparing Verification Results Against Software Quality Objectives

	Software Quality Objective Subsets (C:2004)
	Rules in SQO-Subset1
	Rules in SQO-Subset2

	Software Quality Objective Subsets (AC AGC)
	Rules in SQO-Subset1
	Rules in SQO-Subset2

	Software Quality Objective Subsets (C:2012)
	Guidelines in SQO-Subset1
	Guidelines in SQO-Subset2

	Avoid Violations of MISRA C 2012 Rules 8.x
	Software Quality Objective Subsets (C++)
	SQO Subset 1 – Direct Impact on Selectivity
	SQO Subset 2 – Indirect Impact on Selectivity

	Coding Rule Subsets Checked Early in Analysis
	MISRA C: 2004 and MISRA AC AGC Rules
	MISRA C: 2012 Rules

	HIS Code Complexity Metrics
	Project
	File
	Function

	Fix or Comment Polyspace Results
	Address Polyspace Results Through Bug Fixes or Justifications
	Add Review Information in Result Details pane
	Comment or Annotate in Code

	Annotate Code and Hide Known or Acceptable Results
	Code Annotation Syntax
	Syntax Examples

	Short Names of Code Prover Run-Time Checks
	Short Names of Code Complexity Metrics
	Project Metrics
	File Metrics
	Function Metrics

	Define Custom Annotation Format
	Define Annotation Syntax Format
	Map Your Annotation to the Polyspace Annotation Syntax

	Annotation Description Full XML Template
	Example

	Justify Coding Rule Violations Using Code Prover Checks
	Rules About Data Type Conversions
	Rules About Pointer Arithmetic

	Manage Results
	Filter and Sort Results
	Filter Results

	Prioritize Check Review

	Reviewing Checks
	Review and Fix Absolute Address Usage Checks
	Review and Fix Correctness Condition Checks
	Step 1: Interpret Check Information
	Step 2: Determine Root Cause of Check
	Step 3: Trace Check to Polyspace Assumption

	Review and Fix Division by Zero Checks
	Step 1: Interpret Check Information
	Step 2: Determine Root Cause of Check
	Step 3: Look for Common Causes of Check
	Step 4: Trace Check to Polyspace Assumption

	Review and Fix Function Not Called Checks
	Step 1: Interpret Check Information
	Step 2: Determine Root Cause of Check
	Step 3: Look for Common Causes of Check

	Review and Fix Function Not Reachable Checks
	Step 1: Interpret Check Information
	Step 2: Determine Root Cause of Check

	Review and Fix Function Not Returning Value Checks
	Step 1: Interpret Check Information
	Step 2: Determine Root Cause of Check

	Review and Fix Illegally Dereferenced Pointer Checks
	Step 1: Interpret Check Information
	Step 2: Determine Root Cause of Check
	Step 3: Look for Common Causes of Check
	Step 4: Trace Check to Polyspace Assumption

	Review and Fix Incorrect Object Oriented Programming Checks
	Step 1: Interpret Check Information
	Step 2: Determine Root Cause of Check

	Review and Fix Invalid C++ Specific Operations Checks
	Step 1: Interpret Check Information
	Step 2: Determine Root Cause of Check
	Step 3: Trace Check to Polyspace Assumption

	Review and Fix Invalid Shift Operations Checks
	Step 1: Interpret Check Information
	Step 2: Determine Root Cause of Check
	Step 3: Look for Common Causes of Check
	Step 4: Trace Check to Polyspace Assumption

	Review and Fix Invalid Use of Standard Library Routine Checks
	Step 1: Interpret Check Information
	Step 2: Trace Check to Polyspace Assumption

	Invalid Use of Standard Library Floating Point Routines
	What the Check Looks For
	Single-Argument Functions Checked
	Functions with Multiple Arguments

	Review and Fix Non-initialized Local Variable Checks
	Step 1: Interpret Check Information
	Step 2: Determine Root Cause of Check
	Step 3: Look for Common Causes of Check
	Step 4: Trace Check to Polyspace Assumption

	Review and Fix Non-initialized Pointer Checks
	Step 1: Interpret Check Information
	Step 2: Determine Root Cause of Check
	Step 3: Trace Check to Polyspace Assumption

	Review and Fix Non-initialized Variable Checks
	Step 1: Interpret Check Information
	Step 2: Determine Root Cause of Check
	Step 3: Trace Check to Polyspace Assumption

	Review and Fix Non-Terminating Call Checks
	Step 1: Determine Root Cause of Check
	Step 2: Look for Common Causes of Check

	Identify Function Call with Run-Time Error
	Review and Fix Non-Terminating Loop Checks
	Step 1: Interpret Check Information
	Step 2: Determine Root Cause of Check
	Step 3: Look for Common Causes of Check

	Identify Loop Operation with Run-Time Error
	Review and Fix Null This-pointer Calling Method Checks
	Step 1: Interpret Check Information
	Step 2: Determine Root Cause of Check

	Review and Fix Out of Bounds Array Index Checks
	Step 1: Interpret Check Information
	Step 2: Determine Root Cause of Check
	Step 3: Look for Common Causes of Check
	Step 4: Trace Check to Polyspace Assumption

	Review and Fix Overflow Checks
	Step 1: Interpret Check Information
	Step 2: Determine Root Cause of Check
	Step 3: Look for Common Causes of Check
	Step 4: Trace Check to Polyspace Assumption

	Review and Fix Return Value Not Initialized Checks
	Step 1: Interpret Check Information
	Step 2: Determine Root Cause of Check
	Step 3: Look for Common Causes of Check
	Step 4: Trace Check to Polyspace Assumption

	Review and Fix Uncaught Exception Checks
	Step 1: Interpret Check Information
	Step 2: Determine Root Cause of Check

	Review and Fix Unreachable Code Checks
	Step 1: Interpret Check Information
	Step 2: Determine Root Cause of Check
	Step 3: Look for Common Causes of Check

	Review and Fix User Assertion Checks
	Step 1: Determine Root Cause of Check
	Step 2: Look for Common Causes of Check
	Step 3: Trace Check to Polyspace Assumption

	Find Relations Between Variables in Code
	Insert Pragma to Determine Variable Relation
	Further Exploration

	Review Polyspace Results on AUTOSAR Code
	See Overview of Results for all Software Components
	See Runnables and Source Files in Software Component
	Interpret AUTOSAR Specific Run-time Checks for Software Component

	Coding Rule Sets and Concepts
	Polyspace MISRA C 2004 and MISRA AC AGC Checkers
	MISRA C:2004 and MISRA AC AGC Coding Rules
	Supported MISRA C:2004 and MISRA AC AGC Rules
	Troubleshooting
	List of Supported Coding Rules
	Unsupported MISRA C:2004 and MISRA AC AGC Rules

	Polyspace MISRA C:2012 Checkers
	Essential Types in MISRA C: 2012 Rules 10.x
	Categories of Essential Types
	How MISRA C: 2012 Uses Essential Types

	Unsupported MISRA C:2012 Guidelines
	Polyspace MISRA C++ Checkers
	Unsupported MISRA C++ Coding Rules
	Language Independent Issues
	General
	Lexical Conventions
	Expressions
	Declarations
	Classes
	Templates
	Exception Handling
	Library Introduction

	Polyspace JSF C++ Checkers
	JSF C++ Coding Rules
	Supported JSF C++ Coding Rules
	Unsupported JSF++ Rules

	Approximations Used During Verification
	Why Polyspace Verification Uses Approximations
	Orange Sources
	Constrain Orange Sources

	Variable Ranges
	Stubbed Functions
	Function Return Value
	Function Arguments That are Pointers
	Global Variables

	Initialization of Global Variables
	Global Variable Initialization When main Function Exists
	Global Variable Initialization When main Function Does Not Exist
	How Code Prover Implements Assumption About Global Variable Initialization
	What Initialization Means for Complex Data Types

	Volatile Variables
	Definitions and Declarations
	Definition
	Declaration

	Implicit Data Type Conversions
	Implicit Conversion When Operands Have Same Data Type
	Implicit Conversion When Operands Have Different Data Types

	Using memset and memcpy
	Polyspace Specifications for memcpy
	Polyspace Specifications for memset

	#pragma Directives
	Standard Library Float Routines
	Unions
	Variable Cast as Void Pointer
	Assembly Code
	Recognized Inline Assemblers
	Single Function Containing Assembly Code
	Multiple Functions Containing Assembly Code
	Local Variables in Functions with Assembly Code

	Determination of Program Stack Usage
	Investigate Possible Stack Overflow
	Stack Usage Not Computed
	Stack Usage Assumptions

	Limitations of Polyspace Verification

	Troubleshooting Polyspace Access
	Polyspace Access ETL and Web Server services do not start
	Issue
	Possible Cause: Hyper-V Network Configuration Cannot Resolve Local Host Names

	Contact Technical Support About Polyspace Access Issues

